Having A Specific Capacitor, Ignition Coil Means, Or Switching Element Circuit Path Patents (Class 123/605)
  • Patent number: 5074274
    Abstract: An ignition system for internal combustion engines comprising an ignition coil (38), a power circuit (30) including a converter for converting the output of a battery (31) into a high voltage, a capacitor (37) arranged at the primary side of the ignition coil (38) and charged by the output from the power circuit (30), a discharging control thyristor (41) which conducts at a spark-timing of an internal combustion engine to discharge electric charges in the capacit of (37) into the primary winding (38a) of the ignition coil (38) and converter control means (49, 52) which makes the converter inactive earlier than the input of a trigger signal to the gate of the thyristor (41) by a first predetermined time (t.sub.1), and which makes the converter active again in a second predetermined time (t.sub.2) since the thyristor (41) has been triggered to conduct.
    Type: Grant
    Filed: February 21, 1991
    Date of Patent: December 24, 1991
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Hiroshi Okuda
  • Patent number: 5060623
    Abstract: An apparatus is provided for controlling ignition in an internal combustion engine having N cylinders and a capacitor discharge ignition system. The capacitor discharge system includes an ignition capacitor which is maintained at a predetermined electrical potential by a charging circuit. N transformers are provided, each having a primary coil and a secondary coil. The primary coils include first and second terminals and the secondary coils are electrically connected in parallel with the spark gap in an associated one of the cylinders. Selector switches are connected between the ignition capacitor and an associated one of the primary first terminals. The selector switches are normally biased open and are adapted to close in response to receiving cylinder select signals. The cylinder select signals are produced in response to a desired ignition sequence and for a period of time corresponding to a desired spark duration in an associated cylinder.
    Type: Grant
    Filed: December 20, 1990
    Date of Patent: October 29, 1991
    Assignee: Caterpillar Inc.
    Inventor: Steven R. McCoy
  • Patent number: 4967718
    Abstract: An ignition system for an internal combustion engine comprises a direct-current supply, at least one spark plug, an ignition coil with a primary winding and a secondary winding for connection to the supply and to the at least one plug, respectively, a first electronic switch between the primary winding and the supply, an inductor between the supply and the primary winding of the coil, a capacitor in parallel with the circuit branch including the primary winding and the first switch, a second electronic switch between the inductor and the supply and adapted to disconnect the circuit downstream of the inductor from the supply in its closed condition, and an electronic unit which controls the first and second switches in a predetermined manner.
    Type: Grant
    Filed: November 22, 1989
    Date of Patent: November 6, 1990
    Assignee: Marelli Autronica S.p.A.
    Inventor: Michele Scarnera
  • Patent number: 4964377
    Abstract: In a first operative mode, the control unit first causes energy to be stored by the inductor and then connects the inductor to the capacitor so as to form a resonance circuit whose energy is discharged into the primary winding of the coil in order to generate a spark. In a second operative mode, the unit causes a plurality of cycles to be effected to charge the capacitor so as to increase the voltage across its terminals at each cycle and the capacitor is then discharged into the primary winding of the ignition coil in order to generate the spark.
    Type: Grant
    Filed: November 22, 1989
    Date of Patent: October 23, 1990
    Assignee: Marelli Autronica S.p.A.
    Inventor: Michele Scarnera
  • Patent number: 4918569
    Abstract: A discharge load driving circuit has a transformer with a low voltage coil and a high voltage coil wound around a magnetic core. The high voltage coil has a transformation ratio for setting a high self-resonance frequency value for the transformer to thereby output high voltage at a short rise time period. The discharge load driving circuit further includes a switching element connected to the transformer for switching on and off a d-c input supplied thereto through the low voltage coil of the transformer. The discharge load driving circuit further includes a driver circuit for driving a switching element driving pulse, a control circuit for controlling the driver circuit, a discharge load connected to the high voltage coil for discharging load by a high voltage output generated in the high voltage coil when the switching element is turned on, and a detector for detecting a flow of discharge current in the discharge load. The switching element repeats its on-off action in a predetermined.
    Type: Grant
    Filed: September 25, 1989
    Date of Patent: April 17, 1990
    Assignee: TDK Corporation
    Inventors: Tsutomu Maeda, Kiyoshi Matsui, Takayuki Kanno, Kunihiro Sato
  • Patent number: 4907562
    Abstract: The invention relates to a method for achieving elevated charging of an ignition capacitor in a capacitive type ignition system for internal combustion engines. When starting a cold engine or when starting the engine under other conditions in which the battery capacity is low, activation of the engine starting motor will result in a drop in voltage in the electric system serving both the starting motor and the ignition system. The voltage drop in the electrical system will vary sinusoidally synchronously with the crankshaft rotation, owing to the fact that the starting motor will momentarily subject the electrical system to higher loads when the pistons are located adjacent their top-dead-center position L in the compression stroke. The method solves this problem, by delaying the re-charging of the capacitor until a position is reached in which the voltage drop in the electrical system has its lowest value.
    Type: Grant
    Filed: November 18, 1988
    Date of Patent: March 13, 1990
    Assignee: Saab-Scania Aktiebolag
    Inventors: Hans Johansson, Jan Nytomt
  • Patent number: 4892080
    Abstract: A high-energy ignition system for an internal combustion engine in which both magnetic and electrical energy stored in an energy storage coil and in a capacitor are supplied to the primary winding of an ignition coil at a predetermined timing. When a first or second switching device is turned off, the capacitor is charged with the energy stored in advance in the energy storage coil, and upon subsequent turning on of the first switching device, energy is stored in the energy storage coil from a DC power supply. At substantially the same time as the turning off of the first switching device at an ignition timing, the second switching device is turned on to supply the primary winding with the energy stored in the energy storage coil and the capacitor. Alternatively, the capacitor is charged with the energy stored in advance in the energy storage coil through the primary winding of the ignition coil and a charging diode at the time of turning off of the second switching device.
    Type: Grant
    Filed: July 1, 1988
    Date of Patent: January 9, 1990
    Assignee: Nippondenso Co., Ltd.
    Inventors: Seiji Morino, Satoru Kawamoto, Yoshihiro Yoshitani, Toshio Sugimoto, Toshio Nariki
  • Patent number: 4886036
    Abstract: In a capacitive ignition system for an internal combustion engine, the discharging and charging of an ignition capacitor is controlled by a control unit which actuates a first circuit-breaking element in a discharging circuit and a second circuit-breaking element in a charging circuit. For the purpose of prolonging the ignition sparks so as to reliably ignite, especially in a lean fuel/air mixture, the control unit, at a time following the ordinary ignition time, actuates the second circuit-breaking element in such a way that it is kept conductive simultaneously with the first circuit-breaking element. Current is then supplied from an electrical energy source and via a primary winding. Thereafter, the control unit actuates either the first or second circuit-breaking elements in such a way that the current supply via the primary winding is interrupted, by which means a renewed ignition voltage is obtained which prolongs the ordinary ignition spark.
    Type: Grant
    Filed: April 21, 1988
    Date of Patent: December 12, 1989
    Assignee: Saab-Scania Aktiebolag
    Inventors: Sven H. Johansson, Jan G. Nytomt
  • Patent number: 4868730
    Abstract: A DC to DC power converter designated a synchronous current pump (13) and operated in the preferred mode in synchronization with a discharge circuit (11) and using a capacitor (28) as the energy storage element, and in the preferred embodiment has in series with said capacitor the battery supply (10), an inductor (30), a diode (27a), and the primary winding (31a) of a transformer (31); and across said storage capacitor is an energy transfer FET switch (33) which is used for discharging said capacitor and transferring it stored energy to a output load capacitor (4) connected through a diode (32) to the secondary winding of said transformer. In operation, the current pump supplies power efficiently and smoothly to a load discharge capacitor in synchronization with operation of the discharge circuit.
    Type: Grant
    Filed: December 11, 1987
    Date of Patent: September 19, 1989
    Assignee: Combustion Electromagnetics, Inc.
    Inventor: Michael A. V. Ward
  • Patent number: 4841925
    Abstract: An ignition system for hydrocarbon fuels based in part on the principle of "flame discharge ignition" of coupling ignition energy to the initial flame front plasma either as a "pulsing flame discharge ignition" or an "enhanced conventional discharge ignition". Electrical, geometrical, spark, and hydrocarbon flame front plasma discharge properties are taken into account and adjusted or tailored to create a flame discharge ignition process capable of igniting very lean mixtures. The system is further improved by modifying the fuel's flame front plasma properties by increasing the ratio of the carbon to hydrogen (C/H) content of the fuel and/or by using additives to further increase the flame front plasma density without reducing the plasma recombination coefficient.
    Type: Grant
    Filed: December 11, 1987
    Date of Patent: June 27, 1989
    Assignee: Combustion Electromagnetics, Inc.
    Inventor: Michael A. V. Ward
  • Patent number: 4833369
    Abstract: A constant spark rate ignition exciter is disclosed which functions to store a predetermined constant amount of energy in an energy storage element of an ignition system independent of power supply variations. A first embodiment of the invention is a capacitive discharge ignition system. A second embodiment of the invention is an inductive discharge ignition system. Each embodiment produces the constant frequency ignition pulses by the counting of a predetermined count in a counter. The interval during which energy is stored in energy storage elements of the embodiments of the invention is determined by sensing the power supply potential and controlling the time interval for coupling the power supply to the energy storage element in a manner which is inversely proportional to the sensed voltage.
    Type: Grant
    Filed: October 14, 1987
    Date of Patent: May 23, 1989
    Assignee: Sundstrand Corp.
    Inventor: Robert C. White
  • Patent number: 4829971
    Abstract: This invention relates to a blocking oscillating converter for transferring energy from a source of power, such as a vehicle battery, to a storage means, such as an energy storage capacitor in a capacitor discharge ignition system. A novel control and feedback circuit incorporated in the blocking oscillator allows the drive level to the switching transistor to be controlled in response to the peak current in said transistor as well as the output voltage of the blocking oscillator. Furthermore the control circuit allows the blocking oscillator to be turned off during the short period of time after each spark discharge that is needed for turnoff of a switching device used to control that discharge.
    Type: Grant
    Filed: July 6, 1987
    Date of Patent: May 16, 1989
    Inventor: Floyd M. Minks
  • Patent number: 4825844
    Abstract: The system comprisesa low-voltage electrical supply,an inductive voltage-increaser,a plurality of plugs, anddistribution means for allowing the selective supply of high voltage to the plugs through the voltage-increaser.The latter comprisesa low-voltage winding through which current flows each time a spark is prouduced in at least one plug, anda plurality of coils each of which is associated with a respective plug. Each coil includes first and second windings magnetically coupled together, the second winding being connected electrically to the plug. The distribution means are also adapted to connect the first winding of one or more of the coils selectively to the low voltage winding and to allow current to flow through the said windings to create the spark in the plugs connected to the said coils.
    Type: Grant
    Filed: November 13, 1986
    Date of Patent: May 2, 1989
    Assignee: Magneti Marelli S.p.A.
    Inventor: Giancarlo Fasola
  • Patent number: 4763045
    Abstract: An apparatus for the generation of ignition power and its circuits is composed of two transformers and one discharging capacitor. The triggering signal is taken from the alternating current supply voltage. The stored charge is discharged through a primary winding of a step-up transformer. The secondary voltage is stepped up to several ten thousand peak volts which is enough to make an ignition spark through a large air gap. The first half wave of alternating current power charges the capacitor and the second half wave triggers an SCR to discharge the capacitor. The charging and discharging are completed during a single period of a line power wave.
    Type: Grant
    Filed: May 4, 1987
    Date of Patent: August 9, 1988
    Assignee: Bang H. MO
    Inventors: Hyeong In Choi, Keh-Kun Choi
  • Patent number: 4739185
    Abstract: A pulse generating circuit for a plasma ignition system includes a thyristor connected between a supply terminal and earth. A primary winding (Wp) of a transformer (TR) and a first capacitor (C.sub.1) are connected across the thyristor. The supply terminal is also connected through a secondary winding (W.sub.s) and a diode (D) to an output terminal. A saturable core inductor (L) and a second capacitor (C.sub.2) are connected in series across the output terminal and earth. A plasma plug is also connected across the output terminal and earth. In operation, the first and second capacitors are charged and the thyristor is fired. A high voltage pulse is applied by the secondary winding (W.sub.s) to the plasma plug causing electric breakdown. The second capacitor (C.sub.2) then discharges through the inductor (L) and the plasma plug. Four alternative circuits are also described.
    Type: Grant
    Filed: December 16, 1986
    Date of Patent: April 19, 1988
    Assignee: Lucas Industries Public Limited Company
    Inventors: Michael J. Lee, Philip R. Wentworth
  • Patent number: 4733646
    Abstract: An automotive ignition system including an ignition capacitor electrically connected to a primary winding of a ignition transformer for providing energy to a spark plug which is connected to a second winding of the ignition transformer is disclosed. A charge circuit charges the ignition capacitor from a DC-DC voltage converter and includes an inductor and a thyristor. A discharge circuit discharges the ignition capacitor to the primary winding, and a control circuit operates the charge circuit and the discharge circuit in proper timed sequence during a demanded firing duration.
    Type: Grant
    Filed: April 30, 1986
    Date of Patent: March 29, 1988
    Assignee: Aisin Seiki Kabushiki Kaisha
    Inventor: Shimichiro Iwasaki
  • Patent number: 4696280
    Abstract: A high-tension Capacitor Discharge Ignition apparatus for internal combustion engines is supplied with battery low voltage and generates high voltage utilizing a push-pull amplifier controlled by a pulse-width modulator operating in the audio frequency range and with a thyristor. A capacitor is charged from the high voltage and is triggered by the thyristor to discharge its stored potential through the primary windings of an ignition coil, the thyristor being triggered at its gate by engine ignition pulses blocked by switching-off of the high voltage power source. The voltage present at the thyristor gate is continually applied to at least one comparator and serves as an information source for the thyristor's operating condition. The comparator, based upon its comparison of the thyristor gate voltage with a predetermined reference voltage, generates a signal for deactivating the high voltage source so long as the thyristor remains in its conductive condition.
    Type: Grant
    Filed: August 5, 1986
    Date of Patent: September 29, 1987
    Inventor: Gert G. Niggemeyer
  • Patent number: 4662343
    Abstract: A control circuit operates with a small toroidal transformer, having a ferrite core, to produce high voltage pulses efficiently. The circuit applies a magnetizing force to the transformer core that is in excess of the force required to produce maximum magnetization of the core. The initial magnetizing force is opposed by current flow in the secondary winding. As the secondary current flow approaches zero, it no longer can act to demagnetize the core and the primary can generate a rapid change in magnetic strength resulting in a high voltage in the secondary winding. The rate of change of current in the primary circuit is limited by a small inductor in series with the primary winding of the transformer. The charging circuit is interrupted simultaneously with discharge of a capacitor through the transformer primary. The core is insulated for high voltage and carries a secondary winding of about 300 turns extending over about 300 degrees of the circumference and a primary winding of about three to five turns.
    Type: Grant
    Filed: April 28, 1986
    Date of Patent: May 5, 1987
    Inventor: Kenneth H. Smith
  • Patent number: 4619241
    Abstract: An high-energy ignition device having an igniter coil adapted to produce a high voltage for allowing an electric discharge between electrodes of a sparking plug in accordance with the output from an ignition circuit, and a DC-DC converter adapted to produce a voltage high enough to maintain the electric discharge in the sparking plug. The DC-DC converter is connected such that the output thereof is superposed to the discharge current produced by the igniter coil. The igniter coil and the transformer of the DC-DC converter are integrated with a forming resin. Consequently, the electrical insulation between the parts is improved and the mounting of the ignition device on vehicles is facilitated.
    Type: Grant
    Filed: May 9, 1985
    Date of Patent: October 28, 1986
    Assignee: Hitachi, Ltd.
    Inventor: Takashi Yoshinari
  • Patent number: 4608958
    Abstract: A device for driving a load reactance element, such as a piezoelectric actuator for a fuel injection system, including a series reactance element connected in series with the load reactance element, and a resonance circuit formed by the load reactance and the series reactance. First and second switching elements are connected between the resonance circuit and the power source or ground potential. Each of the first and second switching elements is rendered conductive only during a half cycle of resonance. The directions of the load current flowing through the load reactance element are switchable by making alternately the first and second switching elements conductive.
    Type: Grant
    Filed: September 19, 1983
    Date of Patent: September 2, 1986
    Assignee: Nippon Soken, Inc.
    Inventors: Yasuyuki Sakakibara, Norihito Tokura
  • Patent number: 4596226
    Abstract: An ignition system for an internal combustion engine including a CDI magnet device having a generating coil for charging an ignition capacitor, and an ignition coil having a primary winding which receives a supply of the electric charge discharged by the ignition capacitor through a thyristor, and a signal generating device constituting a circuit for releasing the electric charge of a second capacitor through leak resistors and supplying a signal to a gate of the thyristor when the voltage of the second capacitor reaches a predetermined level.
    Type: Grant
    Filed: May 30, 1985
    Date of Patent: June 24, 1986
    Assignee: Kioritz Corporation
    Inventors: Tadashige Kondo, Naoki Tsuda
  • Patent number: 4522184
    Abstract: A capacitive discharge ignition system for an internal combustion engine and for use with a generator powered current source comprises a storage capacitor, at least one thyristor for discharging the storage capacitor to transfer energy to at least one spark plug and a trigger circuit for gating the at least one thyristor in synchronism with an internal combustion engine with which the ignition system may be associated. The improvement according to this disclosure comprises the storage capacitor is discharged through a diode circuit, a solid state device for switching the output of the generator to ground, a circuit sensing flow in the discharge diode circuit and generating a discharge signal indicative thereof, and a circuit gating the solid state device into conduction in response to said discharge signal.
    Type: Grant
    Filed: April 23, 1984
    Date of Patent: June 11, 1985
    Assignee: Altronic, Inc.
    Inventor: Joseph M. Lepley
  • Patent number: 4515140
    Abstract: A contactless ignition device for internal combustion engines comprising an exciter coil and pulser coil inducing voltages of phases reverse to each other with the rotation of the internal combustion engine, a first capacitor and second capacitor charged with voltages induced by the respective coils and switching elements connected in series in a circuit connecting the first capacitor with an ignition coil so as to conduct the voltage discharged by the second capacitor when either of both induced voltages reaches a set level. A control circuit controlling the switching time of the switching elements is connected to the switching elements so as to delay the operation of the second switching element with the control circuit in the low speed operation range of the engine and to advance the operation in the high speed operation range. This control circuit includes a switching element operating in response to the voltage inducing state of the exciter coil or pulser coil.
    Type: Grant
    Filed: April 26, 1983
    Date of Patent: May 7, 1985
    Assignee: Oppama Kogyo Kabushiki Kaisha
    Inventors: Kiyoshige Enomoto, Masao Iwata
  • Patent number: 4480624
    Abstract: The capacitor discharge ignition system for an internal combustion engine includes an ignition capacitor charged by a power supply and discharged through the primary of an ignition coil when a silicon controlled rectifier (SCR) becomes conductive in response to a trigger voltage is applied to the gate of the SCR. A resistor-capacitor delay circuit on the output of the SCR delays rapid discharge of the capacitor to thereby delay the spark at the spark plug in the secondary of the coil. A second SCR is connected to shunt the RC time delay to effectively advance the spark timing in response to predetermined engine speed.
    Type: Grant
    Filed: August 17, 1983
    Date of Patent: November 6, 1984
    Assignee: Outboard Marine Corporation
    Inventor: Philip A. Anderson
  • Patent number: 4479467
    Abstract: Disclosed herein is a multiple spark circuit for use with a capacitor discharge ignition system including a current supply, a charge capacitor, an ignition coil primary winding, and an ignition timing SCR. The multiple spark circuit includes a charge reservoir capacitor connected to the current supply, a restrike circuit subject to the timing SCR, and to the voltage and discharge current of the charge capacitor, for allowing repeated charging and discharging of the charge capacitor to produce multiple ignition sparks at each ignition timing point, and a charge interrupt circuit, subject to the restrike circuit, for allowing repeated charging of charge capacitor by the charge reservoir capacitor at each ignition timing point. The restrike circuit preferably comprises a thyristor connected to the timing SCR and charge capacitor, and a zener diode connected to the thyristor gate and anode to render the thyristor conductive when the charge capacitor voltage exceeds a predetermined upper limit.
    Type: Grant
    Filed: December 20, 1982
    Date of Patent: October 30, 1984
    Assignee: Outboard Marine Corporation
    Inventors: Thomas W. Burrows, David T. Cavil
  • Patent number: 4478200
    Abstract: An electronic ignition system of the capacitor-discharge type for an internal combustion engine includes a magneto generator having substantially a single generating coil with no center tap, and includes a change-over circuit which changes over the supply of power generated from the generating coil from the capacitor to an auxiliary unit when the capacitor is charged to a given voltage by the half-waves of one polarity of the alternating electromotive force generated in the generating coil. The opposite-polarity half-waves of the alternating electromotive force are supplied to the auxiliary unit even while the capacitor is being charged.
    Type: Grant
    Filed: December 21, 1982
    Date of Patent: October 23, 1984
    Assignee: Kioritz Corporation
    Inventors: Akira Nagashima, Tadashige Kondo
  • Patent number: 4457285
    Abstract: An internal combustion engine ignition system comprises: (a) a capacitive discharge ignition device having a voltage transformer which converts a low DC voltage into a corresponding AC voltage and boosts and rectifies the AC voltage into a first higher DC voltage for discharging each of the spark plugs sequentially, boosts and rectifies the AC voltage into a second higher DC voltage for generating arc-sustaining ignition energy, and rectifies the AC voltage into a third higher DC voltage; (b) an ignition signal generating means which generates and outputs an ignition signal whenever the engine rotates through a predetermined engine rotational angle offset by an angular interval determined by the engine speed and engine load; (c) an ignition coil means having a primary winding and secondary winding, one end of the primary winding thereof receiving the first DC voltage from the DC-DC converting means, the other end of the primary winding thereof being grounded when the ignition signal is received from the ignit
    Type: Grant
    Filed: November 19, 1982
    Date of Patent: July 3, 1984
    Assignee: Nissan Motor Company, Ltd.
    Inventors: Kyugo Hamai, Yasuhiko Nakagawa, Meroji Nakai, Junichi Furukawa, Takashi Ishizuka
  • Patent number: 4455989
    Abstract: A plasma ignition system for an internal combustion engine which varies a discharge time of a plasma ignition energy charged capacitor according to the engine operating condition, e.g., the current engine speed.
    Type: Grant
    Filed: June 15, 1982
    Date of Patent: June 26, 1984
    Assignee: Nissan Motor Company, Limited
    Inventors: Hiroshi Endo, Masazumi Sone, Iwao Imai, Yasuki Ishikawa
  • Patent number: 4448182
    Abstract: An ignition coil includes a primary winding, an auxiliary primary winding and an ignition high voltage generating secondary winding which are wound on the same core. The primary current from the generating coil of a magneto flows to the base of a transistor through the primary winding of the ignition coil. The primary current flowing through the primary winding induces a voltage across the auxiliary primary winding and the induced voltage is applied between the base and emitter of the transistor. At the time of ignition, the primary current flowing to the base of the transistor is shunted by a semiconductor switching element so that the transistor is turned off and the current flowing through the auxiliary primary winding is interrupted, thus generating a high voltage across the secondary winding of the ignition coil.
    Type: Grant
    Filed: September 10, 1980
    Date of Patent: May 15, 1984
    Assignee: Nippondenso Co., Ltd.
    Inventors: Jun Aoyama, Noboru Nakayama
  • Patent number: 4445491
    Abstract: In an auxiliary ignition system for starting a diesel engine having a plurality of plasma spark plugs installed in corresponding combustion chambers facing fuel injection valves, starting time is reduced by applying high ignition energy to the plugs following predetermined time intervals after fuel injection to the corresponding engine cylinders.
    Type: Grant
    Filed: August 16, 1982
    Date of Patent: May 1, 1984
    Assignee: Nissan Motor Company, Limited
    Inventors: Yasuki Ishikawa, Hiroshi Endo, Masazumi Sone, Iwao Imai
  • Patent number: 4441479
    Abstract: An ignition system for a multi-cylinder internal combustion engine having a spark plug within each engine cylinder, wherein a single DC-DC converter is provided and a high-voltage withstanding characteristic capacitor is provided for each spark plug. The capacitor charges to the high DC output voltage of the DC-DC converter and operatively supplies the high DC voltage via a boosting transformer into the corresponding spark plug at a predetermined ignition timing. The amount of the discharge energy being varied according to the pulse width of an input signal of each switching circuit which operates to supply the charged high DC voltage of the capacitor into the corresponding spark plug, the pulse width being varied according to various engine operating conditions.
    Type: Grant
    Filed: July 30, 1982
    Date of Patent: April 10, 1984
    Assignee: Nissan Motor Company, Limited
    Inventors: Hiroshi Endo, Masazumi Sone, Iwao Imai, Yasuki Ishikawa
  • Patent number: 4433669
    Abstract: A plasma ignition system for an internal combustion engine having a plasma ignition plug within each of the engine cylinders, which comprises: (a) a low DC voltage supply such as a vehicle battery; (b) a high surge voltage generator which generates and distributes a high surge voltage having a negative peak value of about minus 15 kilovolts into one of the plasma ignition plugs according to a predetermined ignition order so as to generate a spark discharge at the plasma ignition plug; (c) a DC-DC converter which boosts the low DC voltage sent from the low DC voltage supply to a high DC voltage; (d) a plurality of plasma ignition energy charging means each of which charges the high DC voltage supplied from the DC-DC converter; (e) a plurality of thyristors each for connecting the plasma ignition energy charging means to the corresponding plasma ignition energy charging means to the corresponding plasma ignition plug in response to a first trigger signal applied thereat; (f) a trigger signal generator which gen
    Type: Grant
    Filed: June 7, 1982
    Date of Patent: February 28, 1984
    Assignee: Nissan Motor Company, Limited
    Inventors: Yasuki Ishikawa, Hiroshi Endo, Masazumi Sone, Iwao Imai
  • Patent number: 4418677
    Abstract: The invention provides an alternator driven by an engine crankshaft (11). A stator mounted on the engine (10) includes circumferentially spaced power coils (19) lying in the plane of and radially inward of the power magnets (20) mounted on the engine flywheel (12). Ignition coils (18) are mounted circumferentially spaced from the power magnets (20), but axially offset therefrom to couple with the fringe flux of the power magnets, thus allowing a high output from the power coils (19) without overloading the ignition coils (18).
    Type: Grant
    Filed: November 3, 1981
    Date of Patent: December 6, 1983
    Assignee: Brunswick Corporation
    Inventor: Gloris R. Hofmann
  • Patent number: 4418660
    Abstract: A plasma ignition system for an internal combustion engine, which comprises: (a) a low DC voltage power supply; (b) a DC-DC converter which converts a low DC voltage from the low DC voltage supply to the corresponding AC voltage and inverts the AC voltage to a high DC voltage; (c) a plurality of plasma ignition plugs each located within one of the cylinders; (d) a plurality of first capacitors each for changing the high DC voltage received from the DC-DC converter; (e) a plurality of photosensitive switching elements each connected between each corresponding first capacitor and ground and which turns on to apply the plasma ignition energy charged within the corresponding first capacitor to the corresponding plasma ignition plug at a predetermined timing; (f) a plurality of voltage-boosting transformers each having a common terminal of primary and secondary windings connected to one terminal of each corresponding plasma ignition energy capacitor and another terminal of the primary winding connected to the corr
    Type: Grant
    Filed: April 7, 1982
    Date of Patent: December 6, 1983
    Assignee: Nissan Motor Company, Limited
    Inventors: Hiroshi Endo, Masazumi Sone, Iwao Imai, Yasuki Ishikawa
  • Patent number: 4402298
    Abstract: An improved trigger circuit for a magneto-type ignition system is described. The trigger circuit includes a first generating coil for supplying current flow to a primary winding of the ignition coil, a transistor for controlling the current flow through the primary winding, a capacitor, a thyristor for cooperating with the capacitor to render the transistor non-conductive, and a second generating coil for supplying the power required to charge the capacitor and to control the conduction of both the transistor and thyristor, such that the capacitor is charged and the transistor is rendered conductive by one half wave output from the second generating coil and the thyristor is rendered conductive by the other half wave output from the second generating coil.
    Type: Grant
    Filed: October 8, 1981
    Date of Patent: September 6, 1983
    Assignee: Yamaha Hatsudoki Kabushiki Kaisha
    Inventor: Koji Morita
  • Patent number: 4391236
    Abstract: Disclosed herein is a capacitor discharge ignition system adapted for use with an internal combustion engine and comprising a charge capacitor, an ignition coil primary winding, an ignition SCR, and a spark retard circuit connected in series relationship with the charge capacitor, the primary winding, and the ignition SCR.
    Type: Grant
    Filed: July 24, 1981
    Date of Patent: July 5, 1983
    Assignee: Outboard Marine Corporation
    Inventor: Philip A. Anderson
  • Patent number: 4385617
    Abstract: The present invention relates to a device wherein a positive voltage induced in an exciter coil at the time of a high speed rotation is sensed, a switching transistor is switched on by the terminal voltage of a time constant circuit connected in series with the exciter coil through the switching transistor and, in spite of a negative voltage then induced in the exciter coil, the discharge of a discharging capacitor connected in series with an ignition coil to the ignition coil is delayed by a thyristor for controlling the discharge in response to the above mentioned time constant characteristic to delay the ignition speed, that is, to positively prevent the over-rotation of the internal combustion engine.
    Type: Grant
    Filed: October 6, 1980
    Date of Patent: May 31, 1983
    Assignee: Oppama Kogyo Kabushiki Kaisha
    Inventors: Hiroshi Nakata, Masao Iwata
  • Patent number: 4380224
    Abstract: An ignition system for an internal combustion engine that provides automatically advanced timing over a predetermined range of engine speeds. The ignition system includes a timing circuit (100) that controls the resistance and hence voltage across a capacitor (53) that biases a switch in the trigger circuit (50) of the system. The transistor (125) is operated in its active region so that the transistor (125) operates as a variable resistor. As the resistance of the transistor (125) decreases with increasing engine speed the timing of the system advances. The predetermined speed at which the advance begins is determined by zener diode (119) in series with the base of the transistor (125). The maximum advance of the system is limited by a resistor (94) in series between the transistor (125) and the capacitor (53) of the trigger circuit (50). The transistor (125) is operated in its active region by a transistorized circuit that receives its power from the main storage capacitor (27) of the ignition system.
    Type: Grant
    Filed: July 31, 1981
    Date of Patent: April 19, 1983
    Assignee: The Bendix Corporation
    Inventor: Howard E. Van Siclen, Jr.
  • Patent number: 4369758
    Abstract: A plasma ignition system for an internal combustion engine which can prevent irregular ignition when the insulation between the electrodes of the spark plug deteriorates due to carbon on the electrodes, and further can prevent electrical noise from being emitted. The system according to the present invention comprises a plasma ignition energy storing condenser, a plurality of switching units, and boosting transformers one each for each of the engine cylinders. In this system, a high tension is generated at the secondary coil of the boosting transformer to generate a spark between the electrodes of the plug and subsequently a large current is passed through the electrodes by the remaining energy stored in the condenser.
    Type: Grant
    Filed: September 17, 1981
    Date of Patent: January 25, 1983
    Assignee: Nissan Motor Company, Limited
    Inventor: Hiroshi Endo
  • Patent number: 4366801
    Abstract: A plasma ignition system for an internal combustion engine which can prevent irregular ignition when the insulation between the electrodes of the spark plug deteriorates due to carbon on the electrodes, and further can prevent electrical noise from being emitted. The system according to the present invention comprises a plurality of independent plasma ignition energy storing condensers, switching units, and boosting transformers one each for each of the engine cylinder. In this system, a high tension is generated at the secondary coil of the boosting transformer to generate a spark between the electrodes of the plug and subsequently a large current is passed through the electrodes by the remaining energy stored in the condenser.
    Type: Grant
    Filed: September 17, 1981
    Date of Patent: January 4, 1983
    Assignee: Nissan Motor Company, Limited
    Inventors: Hiroshi Endo, Yasuki Ishikawa, Iwao Imai
  • Patent number: 4336785
    Abstract: A magneto ignition system having inherent means for providing operating biases for components thereof at temperature extremes is disclosed. The disclosed ignition system includes an ignition coil (10) having primary and secondary coil (12, 14) a solid state or semiconductor switch (24) being connected across the primary coil (12) for switching the current therein, and drive and trigger coils (20, 34). The semiconductor switch (24) is driven toward a nonconductive state, to cause an ignition impulse in the secondary coil, by semiconductor latching device (32) which shunts the signal from the drive coil (20) to ground (38). The semiconductor latching device (32) is activated by a trigger coil (34), having a separate magnetic flux path.In order to provide reliable switching at extremes of ambient temperature, means (22) responsive to the common magnetic field of the primary coil, the secondary coil, and the drive coil are provided to effectively provide operating bias to the latching device (32).
    Type: Grant
    Filed: April 28, 1980
    Date of Patent: June 29, 1982
    Assignee: Eltra Corporation
    Inventor: Richard D. Newberry
  • Patent number: 4329950
    Abstract: On-off oscillations immediately following the initiation of the spark in a magneto ignition system are prevented by a timing circuit the capacitor of which is charged continually even during the spark time and whose discharge time constant exceeds 10 .mu.s. The capacitor is discharged through the emitter-base circuit of a control transistor and keeps the control transistor in a saturated state throughout the desired spark duration. While the control transistor is in the saturated state, it shortcircuits the emitter-base circuit of the ignition transistor, thereby blocking the ignition transistor continuously. Since the capacitor of the timing circuit is continually charged, the actual spark duration greatly exceeds the 10 .mu.s time constant of the timing circuit and may be as high as 1.2 ms.
    Type: Grant
    Filed: May 20, 1981
    Date of Patent: May 18, 1982
    Assignee: Robert Bosch GmbH
    Inventors: Josef Orova, Jiri Podrapsky
  • Patent number: 4325350
    Abstract: An alternator-powered breakerless capacitor discharge ignition system for an alternate firing two-cylinder outboard motor provides improved timing characteristics at low, as well as high, engine speeds and prevents reverse engine rotation. The alternator rotor and stator assemblies define a first magnetic circuit which provides constant polarity, constant power pulses for charging a single capacitor in the system. The alternator rotor and trigger assemblies define a second magnetic circuit which provides synchronized narrow trigger pulses, successive one's being of opposite polarity, to operate an electronic control circuit to effect timed capacitor discharge to a pair of spark plug ignition coils in the system. The first magnetic circuit includes a pair of relatively narrow ceramic permanent magnets spaced 180.degree. apart on the alternator rotor flywheel for energizing series-connected, oppositely wound, spaced apart low-speed and high speed stationary windings in the stator assembly.
    Type: Grant
    Filed: November 28, 1979
    Date of Patent: April 20, 1982
    Assignee: Brunswick Corporation
    Inventors: Michael E. Bauer, Richard L. Sleder
  • Patent number: 4269161
    Abstract: An expolsion chamber including a principle which allows a method of exploding various fuel vapors other than gasoline. High electrical energy input to the system is maximized as less combustible vapors are exploded.The two unique features of the system are: 1. The timing is automatically set by standard ignition control which triggers the high energy exploding sequence. 2. Both the ignition injection and the high energy discharge are fed into the exploding chamber with the same electrode. This is possible through the utilization of a high voltage, high current diode stack. The stack is constructed, for example, of 288 diodes. The total peak inverse voltage (PIV) is about 24 kilovolts for ignition preservation and the current discharge surge is about 600 amperes. In the multiple chamber engine, one diode stack is required for each chamber. In the four chamber engine about 1,152 diodes are utilized. High power rheostats are placed in series with the stacks to control the dwell time of the electrical discharge.
    Type: Grant
    Filed: July 18, 1979
    Date of Patent: May 26, 1981
    Inventor: William F. Simmons
  • Patent number: 4259939
    Abstract: A monolithic Darlington in which the transistors forming the Darlington pair are formed on a substrate together with a fourth terminal in addition to the normal three terminals provided for a Darlington pair, the fourth terminal being connected to the base electrode of the second transistor and the emitter electrode of the first transistor. The addition of the fourth terminal enables a control circuit for controlling the rate of switch off to be connected between the fourth terminal and the command collector electrode, this removing the effect which the stored charge on the base electrode of the first transistor has on the switching rate of the Darlington pair, thus enabling a faster switching rate to be achieved.
    Type: Grant
    Filed: September 18, 1979
    Date of Patent: April 7, 1981
    Assignee: Lumenition Limited
    Inventor: John P. Coates
  • Patent number: 4245609
    Abstract: An ignition system includes an alternating current power source which feeds a transformer having a primary winding, the primary winding being coupled to an electronic switch. The electronic switch intermittently interrupts current flowing in the primary winding and in the output circuit of the power source. Such electronic switch is made operable by virtue of the peak excursions of the alternating current thus supplying the necessary collector or emitter potential, depending upon the manner in which the electronic switch is connected, for the entire igniter firing cycle. A capacitor in series with the output circuit of the power source and with the primary winding enables current to be transferred out of the power source to such primary winding. Such electronic switch also provides discrete separation between successive output waveforms of successive ignition firing cycles. The system employs a temporary change accumulator inductor in the output circuit in series with the primary winding.
    Type: Grant
    Filed: December 18, 1978
    Date of Patent: January 20, 1981
    Inventor: Martin E. Gerry
  • Patent number: 4244337
    Abstract: In an ignition system for internal combustion engines having a magneto generator for charging a capacitor and a thyristor for discharging the capacitor through an ignition coil upon receiving an ignition signal, an auxiliary capacitor and an associated transformer are provided as a source of the ignition signal. The auxiliary capacitor is charged through the transformer by each half-cycle of the magneto generator output of the opposite polarity with respect to the charging half-cycle of the capacitor. The auxiliary capacitor is discharged through the gate-cathode path of the thyristor under control of an auxiliary switching element to which a timing signal generator provides a timing signal at a proper ignition time.
    Type: Grant
    Filed: May 24, 1979
    Date of Patent: January 13, 1981
    Assignee: Nippondenso Co., Ltd.
    Inventor: Masahiro Asai
  • Patent number: 4232646
    Abstract: An ignition system for internal combustion engines in which a capacitor is charged at each one-polarity half-cycle of the output of a magneto generator and then the capacitor is discharged through a thyristor and a primary coil of an ignition coil when the thyristor is turned on. To turn on the thyristor, a gate-cathode current is supplied through a semiconductor switching element from an auxiliary capacitor which is charged by a timing generator which generates an output prior to only a predetermined ignition time. Although the semiconductor switching element is turned on by an ignition signal generating means, for example, a transformer, when the transformer produces an ignition signal at each the other-polarity half-cycle of the magneto generator output, the gate-cathode current is supplied to the thyristor only when the auxiliary capacitor has been charged by the timing generator.
    Type: Grant
    Filed: May 22, 1979
    Date of Patent: November 11, 1980
    Assignee: Nippondenso Co., Ltd.
    Inventor: Masahiro Asai
  • Patent number: 4228780
    Abstract: A capacitor discharge ignition system is provided with an ignition timing control arrangement to achieve a predetermined ignition timing retard characteristic at high engine speeds and thus provide engine speed control. The capacitor discharge ignition system is positioned adjacent a rotating permanent magnet that is rotated over a path in synchronism with the operation of an engine to be controlled.The capacitor discharge ignition system includes a stator core having disposed thereon an ignition coil and a control coil. As a first pole of the magnet passes the stator core, a voltage and current of a first polarity is induced in the control coil to charge a storage capacitor. As the second pole of the magnet passes the stator core, a voltage and current of the opposite polarity is induced in the control coil and a control arrangement responsive to the control coil discharges the capacitor into a primary winding of the ignition coil.
    Type: Grant
    Filed: February 22, 1979
    Date of Patent: October 21, 1980
    Assignee: Wabash, Inc.
    Inventor: Ronald J. Kiess
  • Patent number: 4228778
    Abstract: To combine the advantage of a capacitor discharge ignition system, in which the spark intensity is essentially independent of engine speed even at high speeds of the engine, and the extended spark discharge of electromagnetic coil storage ignition by interrupting current through an ignition coil, an ignition event control circuit--for example a breaker contact, optical or electromagnetic transducer or the like--controls a discharge circuit through a capacitor which, after having been charged, suddenly and abruptly discharges through the ignition coil to generate an ignition event. Triggering of the ignition event also initiates repetitive energization of the ignition coil, under control of a frequency generator, which is then connected to the ignition coil to repetitively cause current flow, and abrupt interruption thereof, so that the spark duration, initiated for discharge of the capacitor, is extended.
    Type: Grant
    Filed: August 11, 1978
    Date of Patent: October 21, 1980
    Assignee: Robert Bosch GmbH
    Inventors: Friedrich Rabus, Gunter Grather