With Modifying Or Updating Memory (i.e., Learning) Patents (Class 123/674)
  • Patent number: 10309324
    Abstract: This fuel property estimation device is used in an internal combustion engine that uses a mixed fuel of three kinds of fuel and includes a first sensor that outputs a signal responsive to a physical property of the fuel in a fuel route and a second sensor outputs a signal responsive to an oxygen concentration of exhaust gas. This device measures a physical property value of the mixed fuel based on a first sensor signal, and calculates an air-fuel ratio value at stoichiometric combustion state using feedback of a second sensor signal. This device estimates a composition ratio of the mixed fuel based on the measured physical property value and the calculated air-fuel ratio value by referring to a relationship between the composition ratio of the mixed fuel and the physical property value and a relationship between the composition ratio of the mixed fuel and a theoretical air-fuel ratio value.
    Type: Grant
    Filed: November 10, 2014
    Date of Patent: June 4, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takashi Hotta, Kazuhisa Mogi, Koji Kitano, Satoshi Taniguchi
  • Patent number: 10273892
    Abstract: A fuel supply system for use with an internal combustion engine has a check valve and a purge valve disposed in a purge passage that extends from a canister to connect with an intake passage of the internal combustion engine. A controller regulates the purge valve open with a first opening degree or a first duty ratio during a purge operation. The controller may also regulate the purge valve to open with a second opening degree larger than the first opening degree or a second duty ratio larger than the first duty ratio a predetermined time after initiating the purge operation.
    Type: Grant
    Filed: July 9, 2015
    Date of Patent: April 30, 2019
    Assignees: AISAN KOGYO KABUSHIKI KAISHA, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ryuji Miyazaki, Hidetoshi Tsutsumi, Tomonori Nakatsuka, Kinji Morihiro, Koji Honda
  • Patent number: 10161337
    Abstract: A control device for an internal combustion engine includes an electronic control unit configured to switch a control algorithms for a calculation of a command value of the actuator between a first control algorithm and a second control algorithm. The electronic control unit is configured to calculate a value obtained by adding a value of a term of the second control algorithm changing in accordance with the deviation calculated in a present control cycle to the command value calculated in a previous control cycle in accordance with the first control algorithm as a value of the command value calculated in the present control cycle in a first control cycle after switching from the first control algorithm to the second control algorithm. The value of the term changing in accordance with the deviation includes an update amount of an I term of the I control calculated in the present control cycle.
    Type: Grant
    Filed: January 8, 2016
    Date of Patent: December 25, 2018
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Shinsuke Aoyagi
  • Patent number: 10138837
    Abstract: The air-fuel ratio feedback control is performed by using a first correction value which is determined depending on a difference between a detected air-fuel ratio (A/F) of an air-fuel mixture and a target A/F and a second correction value which is determined depending on the property of the fuel. Further, fuel property learning control is carried out to correct the first correction value and the second correction value so that an absolute value of the first correction value is not more than a threshold value, when the absolute value of the first correction value is larger than the threshold value after performing the charging with fuel.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: November 27, 2018
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Naoki Suzuki, Satoshi Taniguchi, Ryoji Nishiumi
  • Patent number: 10087862
    Abstract: A PCM (60) as an engine control device comprises a torque controlling unit (65) configured to control an engine torque based on an accelerator actuated amount. The torque controlling unit (65) is configured, after an accelerator actuated amount is started to increase, and when a rolling movement is being produced in a power train (PT) which includes at least an engine fixed to a vehicle body by an engine mount, to control for limiting increase in the engine torque so as to make an actual increase rate of the engine torque smaller than a nominal increase rate of the engine torque according to an increase in the accelerator actuated amount, in order to suppress the rolling movement.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: October 2, 2018
    Assignee: MAZDA MOTOR CORPORATION
    Inventors: Kenjiro Konomi, Kenko Ujihara
  • Patent number: 10077723
    Abstract: Provided are an apparatus and a method for compensating for a fuel injection quantity in an engine of a vehicle. The apparatus for compensating for a fuel injection quantity may include: an information collector collecting status information of the vehicle; an oxygen sensor outputting a voltage corresponding to a concentration of oxygen in exhaust gases; a high pass filter (HPF) filtering the output voltage of the oxygen sensor; and a controller generating a reference value on the basis of the status information of the vehicle. In particular, the controller calculates an offset using the reference value and a signal obtained by high-pass filtering the output voltage, and compensates for a fuel injection quantity in each individual cylinder of the engine of the vehicle on the basis of the offset.
    Type: Grant
    Filed: August 7, 2017
    Date of Patent: September 18, 2018
    Assignees: HYUNDAI MOTOR COMPANY, KIA MOTORS CORPORATION
    Inventors: Bon Chang Koo, Jung Hwan Han
  • Patent number: 10066563
    Abstract: The present disclosure provides a system for adjusting a fuel injector drive signal during a fuel injection event wherein the system comprises an engine having a fuel injector, a fuel control module configured to generate control signals corresponding to a desired fueling profile of a fuel injection event, and a fueling profile interface module that outputs drive profile signals to the fuel injector in response to the control signals to cause the fuel injector to deliver an actual fueling profile, wherein the fueling profile interface module changes the drive profile signals during the fuel injection event in response to a parameter signal indicating a characteristic of the actual fueling profile.
    Type: Grant
    Filed: April 28, 2015
    Date of Patent: September 4, 2018
    Assignee: Cummins Inc.
    Inventor: Syed Shah Jalel
  • Patent number: 10060827
    Abstract: In one example, fleet devices are monitored. The fleet devices include engines. A controller, such as an engine controller or centralized controller, receives sensor data indicative of a load on the engine from one or more of the fleet devices. The controller analyzes the load from the sensor data to identify a management function. The controller generates a message including the management function.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: August 28, 2018
    Assignee: Kohler Co.
    Inventors: William Schnell, Martin Radue, Travis Andren, Todd Baumann, Mark Johansen
  • Patent number: 10060372
    Abstract: A PCM (60) as an engine control device comprises a torque controlling unit (65) configured to control an engine torque based on an accelerator actuated amount. The torque controlling unit (65) is configured, after the accelerator actuated amount is started to increase, and when a power train (PT) which includes at least an engine (E) fixed to a vehicle body by an engine mount (Mt) is started to conduct the rolling movement, to control to limit increase in the engine torque so as to make an actual increase rate of the engine torque smaller than a nominal increase rate of the engine torque according to an increase in the accelerator actuated amount, in order to control an initial speed of the rolling movement.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: August 28, 2018
    Assignee: MAZDA MOTOR CORPORATION
    Inventors: Kenjiro Konomi, Kenko Ujihara
  • Patent number: 10030602
    Abstract: A method is provided for controlling an internal combustion engine on a cycle-by-cycle basis. The method includes: maintaining training data used to identify a mapping function for the engine; populating a buffer with adaptive data for a given cylinder, where the adaptive data are measures of the inputs and the output of the mapping function that were captured during a number of recent operating cycles of the given cylinder; combining training data for the mapping function with the adaptive data; identifying the mapping function from the combined data set using a weighted least squares method; predicting a combustion feature of the given cylinder in the next cycle using the mapping function and measures of the inputs during the present cycle; and controlling the engine based in part on the predicted combustion feature of the given cylinder in the next cycle using one or more actuators.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: July 24, 2018
    Assignee: The Regents of The University of Michigan
    Inventor: Adam Vaughan
  • Patent number: 10018159
    Abstract: A fuel vapor processing apparatus may include a canister capable of adsorbing fuel vapor produced in a fuel tank, a closing valve provided in a vapor passage connecting the canister and the fuel tank, a purge passage connecting the canister and an intake passage of an engine, and a control device. The closing valve may include a movable valve member movable along a linear path and an actuator coupled to the movable valve member. The control device may be coupled to the actuator and may be configured to control the actuator such that the position of the movable valve member along the linear path changes according to a deviation of an actual tank internal pressure of the fuel tank from a target tank internal pressure.
    Type: Grant
    Filed: November 14, 2014
    Date of Patent: July 10, 2018
    Assignee: AISAN KOGYO KABUSHIKI KAISHA
    Inventors: Minoru Akita, Yoshikazu Miyabe, Naoyuki Tagawa
  • Patent number: 10018130
    Abstract: Fuel injector wear compensation methodologies for use with internal combustion engines that alter the injection schedule over the life of the fuel injector(s) by using methods that conduct a primary injection of fuel in the engine (primary fuel event), per an injection schedule within an engine cycle; compare a measured engine parameter(s) to a reference value(s); and then alter the injection schedule applied to the engine, based on the comparing. Another method comprises: during injection events, inject a first fuel in a combustion chamber of the engine; measure an engine parameter(s) of the engine during operation; compare the engine parameter(s) to a reference value(s); add a post injection event of a second fuel during the injection events, based on the comparison. The methods can be applied with single or dual fuels.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: July 10, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Thomas Michael Lavertu, Adam Edgar Klingbeil, Roy James Primus
  • Patent number: 9970345
    Abstract: The exhaust purification system comprises a control apparatus performing main feedback control controlling the amount of fed fuel so that the output air-fuel ratio of the upstream side sensor becomes a target value, sub feedback control setting the target air-fuel based on the output air-fuel ratio of the downstream side sensor, main learning control controlling the amount of fed fuel based on a main learning value, and sub learning control controlling the amount of fed fuel based on a sub learning value. The control apparatus performs sub learning promotion control so that the sub learning value easily changes to a suitable value when a sub learning promotion condition, which is satisfied when the absolute values of the main learning value and the sub learning value are respectively predetermined reference absolute values or more and these learning values are opposite in sign, is satisfied.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: May 15, 2018
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Kinji Morihiro
  • Patent number: 9932922
    Abstract: Methods and systems are provided for detecting cylinder air-fuel imbalance. In one example, a method may include adjusting engine operation based on an indication of cylinder air-fuel imbalance. The imbalance may be detected based on output from a second exhaust gas sensor and a plurality of individual cylinder weighting factors, the second sensor located in an exhaust system downstream of a first sensor located in the exhaust system.
    Type: Grant
    Filed: October 30, 2014
    Date of Patent: April 3, 2018
    Assignee: Ford Global Technologies, LLC
    Inventor: Douglas James McEwan
  • Patent number: 9926871
    Abstract: A method for an engine may comprise, responsive to a first condition comprising a reference voltage of a first exhaust oxygen sensor operating in variable voltage mode increasing above a threshold voltage, determining a change in an output of the first exhaust oxygen sensor corresponding to the increase in the reference voltage, correcting the output of the first oxygen sensor based on the output change, and adjusting engine operation based on the corrected output. In this way, the accuracy of air-fuel estimates based on the exhaust gas sensor can be preserved, and closed loop fuel control of the engine can be maintained even when the exhaust oxygen sensor is operating VVS mode, thereby reducing engine emissions, increasing fuel economy, and increasing vehicle drivability.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: March 27, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Lyth Alobiedat, Gopichandra Surnilla, Daniel A. Makled, Mohannad Hakeem, Richard E. Soltis, Michael McQuillen, Stephen B. Smith
  • Patent number: 9926865
    Abstract: An evaporated fuel processing apparatus includes: a fuel tank that stores fuel supplied to an engine; a purge pipe that communicates an upper space in the fuel tank with an inlet system of the engine; an electromagnetic valve that is mounted on the purge pipe and that opens and closes the purge pipe; an air-fuel ratio detecting module for detecting an air-fuel ratio of an air-fuel mixture burned in the engine in accordance with an oxygen concentration in exhaust gas emitted from the engine; and a controlling module for controlling open and close of the electromagnetic valve based on an operating state of the engine. The controller controls at least one of a valve-open cycle, a valve-open period, and a valve-open amount of the electromagnetic valve based on a variation value of the air-fuel ratio detected by the air-fuel ratio detecting module when opening the electromagnetic valve.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: March 27, 2018
    Assignee: SUBARU CORPORATION
    Inventors: Kosuke Kuwabara, Kengo Ito, Kazuya Okazaki
  • Patent number: 9790878
    Abstract: A method comprising adjusting a fuel injection amount based on a fractional oxidation state of a catalyst, the fractional oxidation state based on reaction rates of grouped oxidant and reductant exhaust gas species throughout a catalyst and a low-dimensional physics-based model derived from a detailed two-dimensional model to obtain a one-dimensional model averaged over time and space that accounts for diffusion limitations in the washcoat and accurately predicts emissions during cold start.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: October 17, 2017
    Assignee: Ford Global Technologies, LLC
    Inventors: Pankaj Kumar, Imad Hassan Makki
  • Patent number: 9745910
    Abstract: An air feed ratio controlling apparatus can include a predictor for predicting an air fuel ratio on the downstream side of a catalyst calculates a predicted air fuel ratio at least based on an actual air fuel ratio from an oxygen sensor and a history of a first correction coefficient. The air fuel ratio controlling apparatus can also include an adaptive model corrector which determines the deviation between the actual air fuel ratio and the predicted air fuel ratio as a prediction error ERPRE, and superposes a second correction coefficient on the first correction coefficient so that the prediction error may be reduced to zero.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: August 29, 2017
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Masanori Nakamura, Yukihiro Asada, Shiro Kokubu, Emi Shida
  • Patent number: 9695767
    Abstract: An ECU acquires a fluid temperature, a coolant temperature and a soak time, and determines whether vapors have been produced in a fuel supply device on the basis of a vapor production prediction map. When the ECU determines that vapors have been produced in the fuel supply device, the ECU reduces a feedback gain. Subsequently, the ECU predicts a vapor production time, and, when the ECU determines that a vapor production end time has been reached, executes normal feedback control.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: July 4, 2017
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Sunki Lee, Yuji Miyanoo
  • Patent number: 9623866
    Abstract: Systems and methods for adjusting an engine air flow transfer function and engine actuators based on the engine air flow transfer function are presented. The system and method may be applied to hybrid powertrains having a capability to estimate engine torque based on operating characteristics of a motor during vehicle operation.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: April 18, 2017
    Assignee: Ford Global Technologies, LLC
    Inventors: Kenneth James Miller, Douglas Raymond Martin, Bruce Colby Anderson
  • Patent number: 9611856
    Abstract: The present invention provides apparatus featuring a signal processor or processing module that may be configured at least to: process signaling containing information about an equilibrium point of pump differential pressure and system pressure formulated in a hydronic domain by utilizing pump and system characteristic curve equations so as to yield system pressure and flow rate at any particular load and time in a pump hydronic system, including using a multi-dimensional sensorless conversion technique; and determine equivalent hydronic system characteristics associated with the pump differential pressure and flow rate to their corresponding motor power and speed reconstructed and remapped by using a discrete numerical approach, based at least partly on the signaling received. The signal processor or processing module may provide corresponding signaling containing information about the system pumping flow rate and pressure determined.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: April 4, 2017
    Assignee: Fluid Handling LLC
    Inventors: Andrew A. Cheng, Graham A. Scott, James J. Gu
  • Patent number: 9528460
    Abstract: A fuel injection apparatus includes an injector that injects fuel into a combustion chamber or an intake port of an internal combustion engine; an injection amount controller that controls a fuel injection amount of the injector and corrects the fuel injection amount to increase when the internal combustion engine is in a given cold state; an air-fuel ratio detector that detects an air-fuel ratio of the internal combustion engine; and an air-fuel ratio rich fault determiner that determines an air-fuel ratio rich fault when the air-fuel ratio exists on a rich side than a predetermined determination value. The air-fuel ratio rich fault determiner shifts the predetermined determination value toward the rich side in accordance with the increasing correction of the fuel injection amount so as to correct the predetermined determination value.
    Type: Grant
    Filed: January 16, 2015
    Date of Patent: December 27, 2016
    Assignee: FUJI JUKOGYO KABUSHIKI KAISHA
    Inventor: Daisuke Takahashi
  • Patent number: 9512795
    Abstract: An apparatus includes an air-fuel ratio sensor installed in an exhaust passage common to a plurality of cylinders in a multicylinder internal combustion engine, and a control apparatus configured to detect an inter-cylinder air-fuel ratio variation abnormality based on a parameter correlated with a degree of variation in output from the air-fuel ratio sensor. The control apparatus is configured to calculate a division crank angle that bisects an area of a region present in at least one of a rich and a lean sides with respect to a mean value of an output waveform from the air-fuel ratio sensor during one cycle of the internal combustion engine or such a predetermined constant value as corresponds to a center of fluctuation in the output waveform and to identify an abnormal cylinder with a deviation of the air-fuel ratio based on the division crank angle.
    Type: Grant
    Filed: October 9, 2014
    Date of Patent: December 6, 2016
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kenji Suzuki, Yasushi Iwazaki, Hiroshi Miyamoto
  • Patent number: 9482171
    Abstract: An ECU executes a cylinder-by-cylinder air-fuel-ratio control in which an air-fuel-ratio of each cylinder is estimated based on a detection value of an air-fuel-ratio sensor to adjust the air-fuel-ratio of each cylinder. Further, the ECU computes a learning value of a correction quantity for each cylinder, which is obtained by executing the cylinder-by-cylinder air-fuel-ratio control. Then, the ECU determines whether the estimated air-fuel-ratio has converged according to whether the estimated air-fuel-ratio of each cylinder has been closer to a target value than a specified value for not less than a specified time period. A computation of the learning value is prohibited until the estimated air-fuel-ratio has converged. Therefore, it can be avoided to compute the learning value based on the fuel correction quantity that is obtained when the estimated air-fuel-ratio has not converged yet.
    Type: Grant
    Filed: August 19, 2014
    Date of Patent: November 1, 2016
    Assignee: DENSO CORPORATION
    Inventors: Noriaki Iwase, Yasuo Mukai
  • Patent number: 9435246
    Abstract: Various embodiments include systems adapted to monitor catalyst deterioration. Some embodiments include a catalyst deterioration detection system including a pre-catalytic converter gas sensor, a post-catalytic converter gas sensor, at least one computing device in communication with the pre-catalytic converter and post-catalytic converter gas sensors, the at least one computing device configured to monitor catalyst deterioration by performing actions including estimating a catalyst gas storage level by comparing a difference between a pre-catalytic converter gas level from the pre-catalytic converter gas sensor and a post-catalytic converter gas level from the post-catalytic converter gas sensor, comparing the estimated catalyst gas storage level to a baseline catalyst gas storage level and determining that the catalyst is deteriorated in response to the baseline catalyst gas storage level exceeding the estimated gas storage level by a threshold difference.
    Type: Grant
    Filed: November 19, 2013
    Date of Patent: September 6, 2016
    Assignee: General Electric Company
    Inventor: Maruthi Narasinga Rao Devarakonda
  • Patent number: 9395711
    Abstract: A method and system is provided that includes a setpoint monitor in communication with a controller that operates equipment according to setpoint values, each setpoint value having an associated benchmark value. The setpoint monitor receives setpoint modifications based on communication with the controller, each setpoint modification corresponding to a modification of a setpoint value to a modified value different from the associated benchmark value. A terminal in communication with the setpoint monitor displays the setpoint modifications and receives input to revert a setpoint modification from the modified value back to the associated benchmark value. The setpoint monitor communicates with the controller to revert the setpoint value associated with the setpoint modification from the modified value back to the associated benchmark value.
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: July 19, 2016
    Assignee: Emerson Climate Technologies Retail Solutions, Inc.
    Inventors: E. Todd Clark, James R. Mitchell
  • Patent number: 9395206
    Abstract: A method for ascertaining a value of a physical variable in a position transducer system includes the steps of providing a computation model, which maps a response of the position transducer system, wherein the computation model includes a model function and one or multiple parameter(s); ascertaining a value of at least one system variable at one or multiple points in time; determining the parameters of the computation model from one or multiple value(s) of the at least one system variable determined at different points in time; and determining the value of the physical variable as a function of the one or the multiple determined parameters.
    Type: Grant
    Filed: June 3, 2013
    Date of Patent: July 19, 2016
    Assignee: Robert Bosch GmbH
    Inventors: Alexandre Wagner, Ralf Buehrle
  • Patent number: 9366198
    Abstract: In a malfunction judging method for a fuel feeding apparatus in an internal-combustion engine, a feedback correction value is calculated based on an air-fuel ratio parameter and a predetermined feedback control algorithm. In which region a load parameter exists among a first region in which only a first fuel feeding apparatus is used, a second region in which only a second fuel feeding apparatus is used, and a third region other than the first region and the second region is determined. The feedback correction value calculated in a case where the load parameter exists in the first region is determined as a first learned value using a predetermined first learning method. The feedback correction value calculated in a case where the load parameter exists in the second region is determined as a second learned value using a predetermined second learning method.
    Type: Grant
    Filed: January 15, 2015
    Date of Patent: June 14, 2016
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Atsushi Izumiura, Koichiro Shinozaki, Takahide Mizuno, Kentaro Onuma, Yuichi Masukake
  • Patent number: 9347391
    Abstract: An air-fuel ratio control device has an open loop controller which controls an air-fuel ratio to be a target air-fuel ratio, a feedback controller that shifts the target air-fuel ratio to a logical air-fuel ratio, and feedback controls the air-fuel ratio to be the logical air-fuel ratio by using a feedback correction coefficient determined based on an output of an O2 sensor, an average value calculator that calculates an average value of the feedback correction coefficient when the output of the O2 sensor reverses from a lean side to a rich side and from the rich side to the lean side in a feedback control by the feedback controller, and a learned value calculator that calculates a learned value based on the average value at a time when the average value calculated by the average value calculator becomes substantially constant.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: May 24, 2016
    Assignee: SUZUKI MOTOR CORPORATION
    Inventors: Masahiro Nanba, Tomohiko Miyaki, Hitoshi Matsumura
  • Patent number: 9279377
    Abstract: An air-fuel ratio imbalance determination apparatus for a multi-cylinder internal combustion engine includes an air-fuel ratio sensor with a catalyst layer disposed in an exhaust passage of the multi-cylinder internal combustion engine; and a control unit configured: to perform determination regarding an air-fuel ratio imbalance state among cylinders of the multi-cylinder internal combustion engine based on an amount of change per unit time in an air-fuel ratio detected by the air-fuel ratio sensor; to execute an air-fuel ratio enrichment control using an air-fuel ratio enrichment amount; and to correct a learned imbalance value when the air-fuel ratio enrichment amount is smaller than a predetermined determination threshold value in a case where an engine operation state is in an imbalance learning range during execution of the air-fuel ratio enrichment control.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: March 8, 2016
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Takeshi Genko
  • Patent number: 9228523
    Abstract: A diagnostic for identifying cylinder to cylinder air/fuel ratio faults of an engine having closed loop fuel control. Air mass flow is accumulated for a plurality of load bands on the engine load/speed map, and for each load band a rich/lean air fuel ratio is determined at a mass threshold. This threshold data is processed and compared with fixed data to determine whether any cylinder of an engine is experiencing an air/fuel ratio fault which is substantially different to the remainder.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: January 5, 2016
    Assignee: Jaguar Land Rover Limited
    Inventor: Brian Varney
  • Patent number: 9228528
    Abstract: An object of the invention is to provide a feedback control system that calculates a P term and an I term on the basis of a deviation between a target value and a measured value of a control amount, and calculates a correction amount to be applied to an operation amount of a control subject on the basis of a PI term, which is a sum of the P term and the I term, wherein divergence of the I term in a condition where the PI term is restricted by a guard is prevented while improving a convergence property of the I term following removal of the restriction applied to the PI term by the guard.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: January 5, 2016
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Shinsuke Aoyagi
  • Patent number: 9200580
    Abstract: In a method for operating an injection valve having a longitudinal axis, an injection needle, a control valve and an actuator embodied as a solid body actuator, wherein the actuator acts on the control valve and the control valve acts on the injection nozzle, various pre-defined quantities of electrical energy are supplied to the actuator in a plurality of adaptation flows in order to modify an axial length of the actuator. This electrical energy is defined such that an axial position of the injection nozzle remains unchanged. In correlation with the respective adaptation flow, and following the energy supply associated with the respective adaptation flow, a first and second voltage value are detected and a voltage differential value is then determined which is compared with a pre-defined threshold value and, on the basis of the comparison, at least one control of the actuator is adapted to the injection of fluid.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: December 1, 2015
    Assignee: CONTINENTAL AUTOMOTIVE GMBH
    Inventor: Martin Brandt
  • Patent number: 9163587
    Abstract: A low-pressure loop EGR device includes an electronic control unit. When an off signal is inputted from a key switch as a stop warning signal to give notice that a supercharged engine is about to stop, the electric control unit controls an EGR valve so as to close an EGR passage, and then controls a nozzle actuator so as to turn multiple variable nozzles in a narrowing direction.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: October 20, 2015
    Assignee: IHI Corporation
    Inventor: Yuji Kobayashi
  • Patent number: 9103294
    Abstract: Methods and systems are disclosed for fuel drift estimation and compensation using exhaust oxygen levels and fresh air flow measurements. An actual fueling to the engine cylinders is determined from the exhaust oxygen level and fresh air flow to the internal combustion engine. The actual fueling is compared to an expected fueling based on the fueling command provided to the internal combustion engine. The difference between the actual fueling and expected fueling is fuel drift error attributed to changes or drift in the fuel injection system and is used to correct or compensate future fueling commands for the fuel drift.
    Type: Grant
    Filed: October 16, 2012
    Date of Patent: August 11, 2015
    Assignee: Cummins Inc.
    Inventors: Vivek A. Sujan, Ashwin Vyas, Mert Geveci, Axel Otto zur Loye
  • Patent number: 9037387
    Abstract: A control apparatus for an internal combustion engine having a means for performing a model calculation to calculate, as an exhaust temperature calculation value, the temperature of exhaust gas in an exhaust branch tube at the time of starting an engine, using a model representing the temperature behavior of the exhaust gas in the exhaust branch tube during stop of an engine; and an exhaust temperature actual measurement value output means for detecting the temperature of exhaust gas in the exhaust branch tube, and outputting the detected temperature as an exhaust temperature actual measurement value, wherein the model includes at least one parameter.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: May 19, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Teruhiko Miyake
  • Patent number: 9031765
    Abstract: A method to control a non-linear system includes operating a learning cycle to approximate characteristics of the system and, once the learning cycle is complete, operating the system based upon the characteristics. The learning cycle includes monitoring operation of the system, approximating the characteristics of the system with a recursive least squares approximation based upon the monitored operation, comparing variance of the operation to a threshold variance, and completing the learning cycle based upon the variance exceeding the threshold variance.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: May 12, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Kwang-Keun Shin, Jun-Mo Kang, Hanho Yun
  • Patent number: 9026340
    Abstract: An air-fuel ratio control system of an internal combustion engine comprises a fuel amount determiner for determining a fuel command value. The fuel amount determiner has a feedback control mode in which the fuel amount determiner determines a running state reference coefficient corresponding to a running state detected by a running state detector based on a first correspondence stored in the memory, determines a running state compensation coefficient corresponding to the running state detected by the running state detector based on a second correspondence stored in the memory, determines a feedback compensation coefficient used to cause an air-fuel ratio to reach a value closer to a theoretical air-fuel ratio based on an output of the air-fuel ratio sensor, and determines the fuel command value using a formula including the determined running state reference coefficient, the determined running state compensation coefficient, and the determined feedback compensation coefficient.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: May 5, 2015
    Assignee: Kawasaki Jukogyo Kabushiki Kaisha
    Inventors: Shinichi Kuratani, Tsuyoshi Takeuchi, Kozo Suzuki, Takashi Abe, Yoshinobu Mori, Daisuke Yanase
  • Patent number: 8983754
    Abstract: An apparatus for controlling an air-fuel ratio of an internal-combustion engine includes an air-fuel ratio detector, a fluctuation signal generating device, an air-fuel ratio fluctuation device, a 0.5th-order frequency component strength calculator, a fluctuation frequency component strength calculator, a reference component strength calculator, and an imbalance fault determining device. The reference component strength calculator is configured to calculate strength of a reference component in accordance with strength of a first frequency component and strength of a second frequency component. The imbalance fault determining device is configured to make a determination of an imbalance fault in which air-fuel ratios of a plurality of cylinders vary beyond a tolerance limit on a basis of a relative relationship between strength of the 0.5th-order frequency component and the strength of the reference component.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: March 17, 2015
    Assignee: Honda Motor Co., Ltd.
    Inventors: Seiji Watanabe, Tooru Sekiguchi, Hiroyuki Ando, Atsuhiro Miyauchi, Takeshi Aoki, Michinori Tani, Soichiro Goto
  • Patent number: 8924125
    Abstract: Methods and systems for optimizing a performance of a vehicle engine are provided. The method includes determining an initial value for a first engine control parameter based on one or more detected operating conditions of the vehicle engine, determining a value of an engine performance variable, and artificially perturbing the determined value of the engine performance variable. The initial value for the first engine control parameter is then adjusted based on the perturbed engine performance variable causing the engine performance variable to approach a target engine performance variable. Operation of the vehicle engine is controlled based on the adjusted initial value for the first engine control parameter. These acts are repeated until the engine performance variable approaches the target engine performance variable.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: December 30, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Li Jiang, Donghoon Lee, Hakan Yilmaz, Anna Stefanopoulou
  • Publication number: 20140283801
    Abstract: A first parameter correlated with a degree of fluctuation of output from an air-fuel ratio sensor is calculated, and whether or not the calculated first parameter has a value between a predetermined primary determination upper-limit value ?1H and a primary determination lower-limit value is determined. Such forced active control as reduces an air-fuel ratio shift in one of the cylinders which is subjected to a most significant air-fuel ratio shift is performed when the calculated first parameter is determined to have a value between the predetermined primary determination upper-limit value and the primary determination lower-limit value. A first parameter is calculated while the forced active control is in execution. The calculated first parameter is compared with a predetermined secondary determination value to determine whether or not variation abnormality is present.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 25, 2014
    Applicant: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kenji Suzuki, Hiroshi Miyamoto, Yasushi Iwazaki, Senji Kato
  • Patent number: 8706383
    Abstract: A control system includes an engine control module that generates fuel injector command signals for fuel injectors of an engine and engine parameter signals that indicate operating characteristics of the engine. A fuel injector control module communicates with the engine control module via a network. The engine control module transmits the engine parameter signals to the fuel injector control module via the network. The fuel injector control module generates compensated fuel injector signals based on the fuel injector command signals and the engine parameter signals. The engine control module may generate fuel injector command signals for a gaseous fuel mode based on signals received from the fuel injector control module.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: April 22, 2014
    Inventors: Marc Sauve, Louis A. Avallone, Karl H. Kozole
  • Patent number: 8700290
    Abstract: When the ratio of the amount of vaporized fuel (purge amount) to be introduced into an intake passage of an engine from a fuel tank through a purge passage pipe, a purge control valve, etc. to the total amount of fuel (total fuel amount) to be supplied to the engine is large, an abnormality determination system acquires, as a parameter Pon, the air-fuel ratio imbalance index value that increases as the difference between the air-fuel ratios of the respective cylinders increases. When the purge amount is small relative to the total fuel amount, the determination system acquires the air-fuel ratio imbalance index value as a parameter Poff. When the difference between the parameters Pon and Poff is less than a predetermined value and at least one of these parameters is greater than a predetermined threshold value, the determination system determines that an inter-cylinder air intake amount variation abnormality is occurring.
    Type: Grant
    Filed: July 18, 2011
    Date of Patent: April 15, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroshi Miyamoto, Yasushi Iwazaki
  • Patent number: 8700288
    Abstract: A method for assessing a method of functioning of a fuel injector in response to the application of a control voltage to at least one actuator of the fuel injector, including the steps of applying the control voltage to the at least one actuator of the fuel injector for a no-torque-generating injection into an engine, determining a fuel content in an exhaust tract disposed at an engine, comparing the determined fuel content with a specified comparison value, and assessing the method of functioning of the fuel injector based on the comparison result. Furthermore, also described is an evaluation device for assessing a method of functioning of a fuel injector in response to the application of a control voltage.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: April 15, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Andreas Huber, Thomas Breitbach, Rainer Peck, Christian Kriechbaum
  • Patent number: 8694227
    Abstract: An air-fuel ratio control apparatus for an internal-combustion engine includes an air-fuel-ratio sensor, a control-input calculator, an air-fuel-ratio controller, and a gain calculator. The air-fuel-ratio sensor is disposed in an exhaust channel in the internal-combustion engine and is configured to detect an air-fuel ratio in exhaust gas. The control-input calculator is configured to calculate a control input in accordance with an output value of the air-fuel-ratio sensor. The air-fuel-ratio controller is configured to perform a feedback control using the control input such that the output value of the air-fuel-ratio sensor reaches a target value. The gain calculator is configured to calculate a gain in accordance with the output value when the output value is leaner than the target value. The gain is to be used in calculating the control input.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: April 8, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Michinori Tani, Atsuhiro Miyauchi, Kenichi Maeda, Seiji Watanabe, Soichiro Goto
  • Patent number: 8640681
    Abstract: A control apparatus for an internal combustion engine that can prevent, for instance, an exhaust purification catalyst from being damaged when the employed fuel is changed to a fuel having different properties during an operation. If fuel learning is incomplete while a refueling record exists, the throttle opening of an internal combustion engine operable on a fuel that is obtained by mixing alcohol and gasoline at an arbitrary ratio is limited. Limiting the throttle opening makes it possible to avoid an entry into an operation region where fuel increase is performed. This prevents air-fuel ratio feedback control from being stopped when a fuel change occurs. Consequently, the use of an improper air-fuel ratio that may damage the catalyst can be definitely avoided.
    Type: Grant
    Filed: August 28, 2007
    Date of Patent: February 4, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takashi Kawai, Yukihiro Sonoda
  • Patent number: 8620564
    Abstract: An abnormality detection apparatus for a multi-cylinder internal combustion engine changes a fuel injection quantity of a predetermined target cylinder to detect an abnormality of an internal combustion engine based on values of rotational variations relating to the target cylinder detected before and after the change of the fuel injection quantity. The abnormality detection apparatus corrects the values of the rotational variations relating to the target cylinder detected before and after the change of the fuel injection quantity based on at least one of the number of revolutions of the engine and an engine load at a corresponding detection time.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: December 31, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masashi Hakariya, Isao Nakajima, Yoshihisa Oda, Hitoshi Tanaka, Kiyotaka Kushihama, Shota Kitano, Kazuyuki Noda, Katsumi Adachi, Yuichi Kohara, Akihiro Katayama
  • Publication number: 20130333677
    Abstract: Methods and systems for an engine system including an exhaust gas sensor are disclosed. In one example, under a first engine fueling condition, an air-fuel ratio correction factor is determined based on an expected air-fuel ratio and an actual air-fuel ratio. During a second engine fueling condition and a third engine non-fueling condition, fuel alcohol content and ambient humidity, respectively, are determined based on the exhaust gas sensor and corrected based on the air-fuel ratio correction factor.
    Type: Application
    Filed: August 21, 2013
    Publication date: December 19, 2013
    Applicant: Ford Global Technologies, LLC
    Inventors: Gopichandra Surnilla, Richard E. Soltis, Dan A. Makled
  • Patent number: 8600647
    Abstract: An air-fuel ratio control apparatus includes a catalytic converter disposed at a position downstream of an exhaust gas aggregated portion; a downstream air-fuel ratio sensor disposed in an exhaust passage at a position downstream of the catalytic converter; first feedback amount updating means for updating a first feedback amount to have an output value of the downstream air-fuel ratio sensor coincide with a target downstream-side air-fuel ratio based on the output value of the downstream air-fuel ratio sensor; and a learning means for updating a leaning value of the first feedback amount in such a manner that the leaning value brings in a steady-state component of the first feedback amount based on the first feedback amount.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: December 3, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Takayuki Demura
  • Patent number: 8554447
    Abstract: Provided is an internal combustion engine system controller, including a sub-feedback learning section, a state determining section, and a learning update-speed setting section. The state determining section determines, to which of at least three states including: (a) a stable state in which a fluctuating state of a sub-feedback learning value is stable; (b) an unstable state in which the fluctuating state greatly fluctuates; and (c) an intermediate state between the stable state and the instable state (may be referred to as sub-stable state), the fluctuating state corresponds. The learning update-speed setting section sets an update speed of the sub-feedback learning value in accordance with the result of determination by the state determining section. Further, the learning update-speed setting section suppresses the occurrence of hunting of the sub-feedback learning value.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: October 8, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shuntaro Okazaki, Koji Ide