Inoperative Sensor Responsive Patents (Class 123/688)
  • Patent number: 8335617
    Abstract: A sensor detection controller is used in combination with a capacitive sensor that is mounted on a seat of a vehicle in such a manner that a capacitance of the capacitive sensor changes according to whether the seat is occupied. The sensor detection controller has a fault detection mode and a normal detection mode. The sensor detection controller includes a signal source for applying an amplitude signal to the capacitive sensor, a switch for switching a signal path, through which the amplitude signal is applied, between the fault detection mode and the normal detection mode, a signal detector for detecting a change in a voltage or a current of the amplitude signal when the amplitude signal is applied, and an impedance member connected to the signal path.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: December 18, 2012
    Assignees: Denso Corporation, Nippon Soken, Inc.
    Inventors: Masayoshi Satake, Noboru Maeda, Hiroyuki Mori, Kouji Ootaka
  • Patent number: 8316834
    Abstract: A control device for an internal combustion engine includes: an abnormality determination portion determining the presence of an abnormality in a fuel system, such as an injector, by comparing an air-fuel ratio detected by an A/F sensor and a learning value of the air-fuel ratio with a preset abnormality determination value; an alcohol concentration estimating portion estimating the alcohol concentration in fuel based on the air-fuel ratio detected by the A/F sensor and the learning value; and an abnormality determination value changing portion changing the abnormality determination value depending on the alcohol concentration estimated by the alcohol concentration estimating portion.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: November 27, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Hiroyuki Hokuto
  • Patent number: 8290688
    Abstract: An internal combustion engine includes an exhaust system, an oxygen sensor in the exhaust system and a sensor malfunction monitor. In order to maintain operation during a fuel cut-off situation, the sensor malfunction monitor is arranged to control the fuel cut-off sequencing.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: October 16, 2012
    Assignee: DENSO Corporation
    Inventor: Iain Watson
  • Patent number: 8268147
    Abstract: A control device for a gas sensor is configured to: receive a mode command to specify one of a plurality of sensor energization modes including at least a gas concentration detection mode, a protection mode and a pre-energization mode; switch a sensor element of the gas sensor into the one of the plurality of sensor energization modes according to the mode command; judge satisfaction of a certain condition where the mode command is to specify the gas concentration detection mode and the sensor element is in any of the plurality of sensor energization modes other than the pre-energization mode at the time of receipt of the mode command; and prohibit the sensor element from switching over to the gas concentration detection mode when the certain condition is satisfied.
    Type: Grant
    Filed: September 13, 2007
    Date of Patent: September 18, 2012
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Norikazu Ieda, Tomonori Uemura, Hiroshi Inagaki
  • Patent number: 8145409
    Abstract: A method for determining degradation of an exhaust gas sensor positioned in an exhaust system for an internal combustion engine of a vehicle is provided. The method includes sensor response durations to rich-to-lean and lean-to-rich transitions, as well as the symmetry of sensor response durations and delays to such transitions.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: March 27, 2012
    Assignee: Ford Global Technologies, LLC
    Inventors: James Michael Kerns, Timothy Joseph Clark
  • Patent number: 8131451
    Abstract: There is provided an air-fuel ratio sensor with which an improvement in the accuracy in detecting the air-fuel ratio of detection target gas and an improvement in the response characteristics can both be achieved. The sensor includes a sensor element that outputs an output signal indicative of the air-fuel ratio of a detection target gas, a pair of electrodes including a detection target gas side electrode to which the detection target gas is introduced and an atmosphere side electrode exposed to the atmosphere, which are arranged in such a way as to sandwich the sensor element, a diffusion-controlling layer that is disposed on the sensor element in such a way as to cover the detection target gas side electrode and introduces the detection target gas from an entrance portion through which the detection target gas flows in to the detection target gas side electrode, and a catalyst layer provided on a part of the entrance portion.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: March 6, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Keiichiro Aoki
  • Patent number: 8086392
    Abstract: An engine control system includes an oxygen (O2) sensor diagnostic module that diagnoses an O2 sensor and requests a minimum air per cylinder (APC). A throttle actuator module controls a throttle to adjust a mass air flow based on the minimum APC.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: December 27, 2011
    Inventors: Igor Anilovich, Jeffry A. Helmick, Richard B. Jess, John W. Siekkinen, Christopher E. Whitney, Robert C. Simon, Jr.
  • Patent number: 8079351
    Abstract: A system for an internal combustion engine of a vehicle is disclosed. In one example, characteristics of an oxygen sensor are a basis for determining degradation of a temperature sensor. In this way, the system can provide redundant exhaust gas temperature sensing.
    Type: Grant
    Filed: January 10, 2008
    Date of Patent: December 20, 2011
    Assignee: Ford Global Technologies, LLC
    Inventors: Michael James Uhrich, Shane Elwart, Michael Igor Kluzner, Gopichandra Surnilla
  • Patent number: 8050852
    Abstract: An abnormality detection device for an internal combustion engine capable of performing abnormality detection with accuracy, and an air/fuel ratio control apparatus for an internal combustion engine capable of performing air/fuel ratio control with accuracy. An estimated value of the amount of intake air at a valve closing time at which an intake value is closed, is computed. The in-cylinder air/fuel ratio in a cylinder is computed by using the estimated value. The obtained in-cylinder air/fuel ratio is used as an input air/fuel ratio to identify a parameter in a primary delay element. Determination as to the existence/nonexistence of an abnormality in a pre-catalyst sensor (A/F sensor) is made on the basis of the obtained parameter.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: November 1, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Naoto Kato
  • Patent number: 7900439
    Abstract: A diagnostic system for an exhaust system including a catalyst and a post-catalyst oxygen sensor is provided. The system generally includes a fuel control module that commands fuel to transition from a rich condition to a lean condition and that commands fuel to transition from the lean condition to the rich condition. A first diagnostic module monitors the post-catalyst oxygen sensor during the transition from the rich condition to the lean condition. A second diagnostic module monitors the catalyst during the transition from the lean condition to the rich condition.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: March 8, 2011
    Inventors: Robert J. Genslak, Igor Anilovich, Justin F. Adams, Jeffry A. Helmick, Edward Stuteville, Wesley W. Wald, Vidyapriya Srinivasan
  • Patent number: 7900616
    Abstract: An internal combustion engine includes an exhaust system, an oxygen sensor in the exhaust system and a sensor malfunction monitor. The sensor malfunction monitor measures a rate of change of a signal from the sensor on detecting a turning point of the signal and detects a malfunction when a rate of change of the signal exceeds a threshold. Alternatively, the sensor malfunction monitor measures a response time interval starting from a point in time at which a diagnostic function begins to force an air-fuel ratio to change (e.g., from lean-to-rich or rich-to-lean) and ends at a point in time when a turning point of the signal is detected. The sensor malfunction monitor detects a malfunction when the delay time of the response time interval, or average delay time from a plurality of measured response time intervals, exceeds a time threshold.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: March 8, 2011
    Assignee: Denso Corporation
    Inventor: Jonathan Saunders
  • Patent number: 7899606
    Abstract: In an automobile fuel control system having an EGO sensor which sends voltage to an ECM in order to adjust fuel/air ratio, the EGO sensor being disabled and replaced with a substitute signal generator circuit which stimulates the ECM toward lean-running.
    Type: Grant
    Filed: October 17, 2008
    Date of Patent: March 1, 2011
    Inventor: Alfred Manuel Bartick
  • Patent number: 7890245
    Abstract: A device and a method for controlling an internal combustion engine, in which an actual value is determined based on a lambda value and compared with a setpoint value. Based on the comparison, a correction value for a controlled variable is determined and stored. An error is detected if the correction value changes abruptly.
    Type: Grant
    Filed: September 7, 2006
    Date of Patent: February 15, 2011
    Assignee: Robert Bosch GmbH
    Inventors: Thomas Breitbach, Achim Friedel
  • Patent number: 7885757
    Abstract: There is provided a dither control means that performs a dither control, which compulsively changes an air-fuel ratio alternately to rich side and to lean side by increasing and decreasing fuel injection quantity of an injector (fuel injection valve) in a stepped manner. A predicted value (ideal A/F value ID), which indicates an ideal change of a detection value of an A/F sensor (oxygen concentration sensor) in a case where the A/F sensor is not degraded, is set as a standard value. Then, an integral of a difference between the detection value of the A/F sensor, which changes in accordance with the dither control, and the standard value is calculated. If a calculated value of the integral is larger than a predetermined value, it is determined that the A/F sensor is degraded.
    Type: Grant
    Filed: April 1, 2009
    Date of Patent: February 8, 2011
    Assignee: Denso Corporation
    Inventor: Masahiko Yamaguchi
  • Patent number: 7874285
    Abstract: Depending on a trim controller diagnosis, a suspicion marker for an asymmetric ageing of the exhaust gas probe is allocated either a “true” value or a “false” value and, if the value of the suspicion marker is “true”, a dynamic diagnosis will be performed based on the exhaust gas probe's measuring signal, on the basis of the results of which diagnosis either an asymmetrically aged or a non-asymmetrically aged exhaust gas probe will be detected.
    Type: Grant
    Filed: October 4, 2007
    Date of Patent: January 25, 2011
    Assignee: Continental Automotive GmbH
    Inventors: Stefan Barnikow, Michaela Schneider, Norbert Sieber
  • Patent number: 7865294
    Abstract: The invention relates to a method for regulating the lambda value of an internal combustion engine with a catalytic converter for subsequently treating the exhaust gases of the internal combustion engine, with a binary lambda probe, which is mounted upstream from the catalytic converter and which senses the composition of the exhaust gases. According to the invention, the lambda set value is superimposed with a lean/rich amplitude. This lean/rich amplitude has an integral component and a discontinuous component leading back to the lambda set value. When a change that differs from the change in the exhaust gas composition caused by the lean/rich amplitude is detected, the coefficient of the integral component is modified and/or a discontinuous component is added to the integral component or subtracted therefrom.
    Type: Grant
    Filed: September 16, 2005
    Date of Patent: January 4, 2011
    Assignee: Continental Automotive GmbH
    Inventors: Bejoy Mathews, Gerd Rösel, Hong Zhang
  • Patent number: 7846313
    Abstract: An oxygen sensor is employed for determining whether the exhaust air-fuel ratio is rich or lean. A voltage is applied to the oxygen sensor at device impedance calculation intervals to calculate device impedance. After device impedance calculation, a reverse voltage is applied to the oxygen sensor with a view toward promptly negating the influence of voltage application on the sensor output. Subsequently, the sensor output of the oxygen sensor is sampled at sampling time intervals until it is concluded that the device impedance calculation period is over.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: December 7, 2010
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kenji Tashiro, Kazutaka Hattori
  • Patent number: 7813867
    Abstract: A control apparatus which can improve the accuracy of control of a controlled variable by a control input exhibiting a periodic fluctuating behavior. The control apparatus calculates an air-fuel ratio correction value DKCMD such that the output from an oxygen concentration sensor converges to a target output, and calculate a modulated value DKCMD_DSM by modulating DKCMD with an algorithm to which is applied a ? ? modulation algorithm. Further, the control apparatus calculates a reference air-fuel ratio KCMDBS according to an exhaust gas volume, calculates a model modification coefficient KTRQFF using a modification coefficient calculated such that DKCMD become equal to 0, calculates an adaptive reference air-fuel ratio KCMDADP by the equation of KCMDADP=KCMDBS×KTRQFF, and calculates a target air-fuel ratio KCMD by the equation of KCMD=KCMADP+DKCMD_DSM.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: October 12, 2010
    Assignee: Honda Motor Co., Ltd.
    Inventors: Yuji Yasui, Ikue Kawasumi
  • Patent number: 7805928
    Abstract: An exhaust gas sensor for detecting oxygen concentration in exhaust gas is disposed in an exhaust pipe of an internal combustion engine. The sensor including a heater is controlled by a system that includes an electronic control unit. Water vapor contained in the exhaust gas is condensed on the sensor when the exhaust gas temperature is low. If the water condensation occurs while the sensor is heated by the heater, a sensor element may be cracked due to local cooling by the condensed water. To avoid the water condensation, the exhaust gas temperature is raised by retarding ignition timing of the engine for a certain period after the engine is started. After the exhaust gas is heated to a certain level, the sensor is heated. Alternatively, heating of the sensor is prohibited until the exhaust gas temperature becomes to a level at which no water condensation occurs. Thus, the cracking of the sensor element is avoided while making a delay of sensor activation minimal.
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: October 5, 2010
    Assignee: Denso Corporation
    Inventors: Hirofumi Shouda, Eijirou Yamada
  • Patent number: 7801670
    Abstract: To avoid potentially erroneous results, monitoring the operation of an oxygen sensor of an internal combustion engine of a motor vehicle to detect a slow response of the oxygen sensor as indicative of an oxygen sensor fault is temporarily suspended in response to a brake operation transition of a braking system of the vehicle.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: September 21, 2010
    Assignee: Denso Corporation
    Inventors: Peter Richardson, Kenichi Fujiki
  • Patent number: 7797930
    Abstract: An ECU performs exhaust temperature control based on output values of multiple exhaust temperature sensors provided upstream and downstream of a particulate filter provided in an exhaust passage of an engine. The ECU calculates a change speed deviation value by subtracting change speed of outlet side exhaust temperature, which is sensed by one of the exhaust temperature sensors, from change speed of inlet side exhaust temperature, which is sensed by the other one of the exhaust temperature sensors, in an operation state in which temperature of exhaust gas flowing through the particulate filter changes rapidly. The ECU determines that the exhaust temperature sensors are mounted erroneously if the change speed deviation value deviates from a predetermined normal range.
    Type: Grant
    Filed: December 26, 2006
    Date of Patent: September 21, 2010
    Assignee: Denso Corporation
    Inventor: Hideyuki Kusatsugu
  • Patent number: 7769534
    Abstract: A diagnostic system for an engine includes an oxygen detection module, a timing module and a control module. The oxygen detection module receives an oxygen signal from an oxygen sensor that detects an oxygen level in an exhaust system of the engine. The oxygen signal has N rich states and M lean states, where N and M are integers greater than or equal to 1. The timing module determines a rich period that the oxygen signal is in at least one of the N rich states and determines a lean period that the oxygen signal is in at least one of the M lean states. The control module detects an asymmetrical error with the oxygen sensor based on a comparison between the rich period and the lean period.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: August 3, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Yong Xu, Wenbo Wang, Vincent A. White, Richard H. Clutz, Douglas J. Moening
  • Patent number: 7752837
    Abstract: In a diagnosis apparatus for an internal combustion engine which determines the abnormality of a linear A/F sensor which is disposed on the upstream side of a catalyst of the engine and detects the A/F of exhaust gas, the apparatus includes a response/gain deterioration detection unit that separately detects the response deterioration in which the response of the linear A/F sensor is delayed and the gain deterioration in which the detection sensitivity of the linear A/F sensor is abnormal.
    Type: Grant
    Filed: June 25, 2007
    Date of Patent: July 13, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Yoichi Iihoshi, Shin Yamauchi, Toshio Hori, Yoshikuni Kurashima
  • Patent number: 7713391
    Abstract: In an activation state of a sensor device, when voltage on the connection points between the sensor device and the sensor control circuit becomes a preset abnormal value, electric cut off is made between the sensor control circuit and the connection point. Then, the delivery of power to the heater is ceased to lower the temperature of the cells to a below of an activation temperature, thereby increasing the internal resistance of the cell. Thereafter, the sensor control circuit supplies to the sensor device a current in a degree not to damage the sensor device, to detect voltages on the connection points at that time. By comparing between the voltages on the respective connection points detected, a content and location of abnormality occurred is identified for the sensor device.
    Type: Grant
    Filed: December 27, 2005
    Date of Patent: May 11, 2010
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Yoshinori Inoue, Hiroshi Inagaki, Norikazu Ieda
  • Patent number: 7654077
    Abstract: A method is for controlling the operation of an exhaust-gas sensor disposed in an exhaust duct of a motor vehicle and equipped with an internal or external sensor heating device, the motor vehicle including a combustion engine and an automatic switchoff, which causes an automatic switching off of the combustion engine when at least one stop condition is present.
    Type: Grant
    Filed: October 13, 2005
    Date of Patent: February 2, 2010
    Assignees: Volkswagen AG, Skoda Auto A.S.
    Inventors: Michael Zillmer, Matthias Holz, Ekkehard Pott, David Prochazka
  • Patent number: 7644576
    Abstract: A sensor control device is connected with a plurality of exhaust sensors including an NOx sensor to be disposed around a catalyst, and is constructed such that a plurality of drive control circuits to be connected in a one-to-one relationship with the individual gas sensors are disposed in one casing. The sensor control device is provided with a communication output section that outputs signals through a digital communication line so that the signal transmissions/receptions with an ECU may be executed through the digital communication line. This digital communication line is physically a one-system cable but can transmit and receive signals of a plurality of kinds with predetermined communication protocols.
    Type: Grant
    Filed: April 25, 2005
    Date of Patent: January 12, 2010
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Hiroshi Inagaki, Ronald S. Patrick
  • Patent number: 7614392
    Abstract: A gas sensor diagnostic method includes: a fuel supply detecting step of detecting an interruption of a fuel supply to the internal combustion engine, and a restart of the fuel supply after the interruption of the fuel supply; a response time period accumulating step of determining a response time period by accumulating a first time period that the sensor output value reaches from a first threshold value to a second threshold value after the detection of the interruption of the fuel supply, and a second time period that the sensor output value reaches from a third threshold value to a fourth threshold value after the detection of the restart of the fuel supply after the interruption of the fuel supply; and an abnormal state diagnosing section of determining an abnormal state of the gas sensor when the response time period is greater than a predetermined time period.
    Type: Grant
    Filed: February 19, 2008
    Date of Patent: November 10, 2009
    Assignees: NGK Spark Plug Co., Ltd., Suzuki Motor Corporation
    Inventors: Reina Fukagai, Norikazu Ieda, Masahiro Tanaka, Hiroshi Inagaki, Kunihiko Takamatsu, Masaki Hirata, Takahiro Suzuki
  • Patent number: 7599786
    Abstract: A vehicle is equipped with a planetary gear mechanism including a sun gear, a carrier, and a ring gear that are respectively connected to a first motor, an engine, and a driveshaft. A second motor is further linked to the driveshaft. An air-fuel ratio sensor located in an exhaust system of the engine detects the air-fuel ratio while the engine is rotated in a fuel cut state. Normality or abnormality of the air-fuel ratio sensor is identified, based on a result of determination whether the detected air-fuel ratio is out of a specified normal range. When engine stop conditions for stopping the operation (rotation) of the engine are satisfied during execution of failure detection of the air-fuel ratio sensor (steps S300 and S310), the drive control of the invention maintains the rotation of the engine in the fuel cut state until completion of the failure detection of the air-fuel ratio sensor and controls the first motor to motor the engine (step S330).
    Type: Grant
    Filed: December 26, 2006
    Date of Patent: October 6, 2009
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Atsuko Utsumi, Takahiro Nishigaki
  • Patent number: 7578288
    Abstract: In a method for operating an internal combustion engine, a sensor for detecting and/or an actuator for setting a performance quantity of the internal combustion engine is/are monitored for the presence of a malfunction. Monitoring is performed at a first operating point of the internal combustion engine at a lower load and at an operating point of the internal combustion engine at a higher load. The two operating points are set alternatingly, and at least one of the two operating points is set multiple times for a single monitoring operation.
    Type: Grant
    Filed: February 8, 2007
    Date of Patent: August 25, 2009
    Assignee: Robert Bosch GmbH
    Inventors: Christof Thiel, Matthias Heinkele, Andreas Bethmann, Kai Jakobs
  • Patent number: 7549284
    Abstract: A diagnostic device and method of an engine exhaust purifying system, which perform active control of an air-fuel ratio and can make diagnosis of air-fuel ratio sensors, catalysts, etc. in the engine exhaust purifying system with high accuracy and reliability while avoiding a worsening of exhaust emissions, an increase of revolution variations, etc.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: June 23, 2009
    Assignee: Hitachi, Ltd.
    Inventors: Yoichi Iihoshi, Shinji Nakagawa, Toshio Hori, Yoshikuni Kurashima
  • Patent number: 7536244
    Abstract: A failure diagnostic apparatus is provided with an offset power source for offsetting a ground-side voltage of an air-fuel ratio sensor, an activation state judging unit for judging whether the air-fuel ratio sensor is active, a failure diagnosing unit for judging for a failure from an offset-added output signal of the air-fuel ratio sensor in a period when the activation state judging unit judges that the air-fuel ratio sensor is active, an input resistance switching unit for switching the level of an input signal from the air-fuel ratio sensor when the failure diagnosing unit has detected a failure in the air-fuel ratio sensor, and a failure state judging unit for determining a type of failure of the air-fuel ratio sensor on the basis of a voltage level obtained when the input resistance switching unit has switched the input signal level.
    Type: Grant
    Filed: July 22, 2004
    Date of Patent: May 19, 2009
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Mitsuyasu Kunihiro, Koji Nishimoto
  • Patent number: 7526914
    Abstract: An oxygen concentration sensor including the sensor element for detecting oxygen concentration in the exhaust gas and the heater for heating the sensor element is installed at the location downstream of a DPF. An ECU controls power supply to the heater to make the sensor element at a predetermined active state. The ECU calculates heat data corresponding to a heat budget in the exhaust pipe in close proximity to the sensor location part after the engine startup, based upon an operating condition of the engine and a driving condition of a vehicle and also makes a determination as to dryness inside the exhaust pipe based upon the heat data. In addition, the power supply to the heater is controlled based upon the result of the dryness determination.
    Type: Grant
    Filed: November 13, 2006
    Date of Patent: May 5, 2009
    Assignee: DENSO Corporation
    Inventor: Shuichi Nakano
  • Patent number: 7499789
    Abstract: A deterioration signal generation device for a gas sensor for simulating a deterioration signal output by a gas sensor in a deteriorated state, the gas sensor detecting the fuel-air ratio of exhaust gas from an internal combustion engine based on the concentration of particular components in the exhaust gas, the deterioration signal generation device including a reference signal acquisition unit as defined herein, a reference signal storing unit as defined herein, a delay time setting unit as defined herein and a signal delay generation unit as defined herein.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: March 3, 2009
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Satoru Toda, Kunihiko Takamatsu, Naoto Sawaki
  • Patent number: 7421836
    Abstract: A multi-cylinder group engine system operable in at least a first mode and a second mode, where in the first mode a first and second cylinder group combust air and fuel, and where in the second mode at least one of the first and second cylinder group combusts air and fuel and the other one of the first and second cylinder group pumps air without injected fuel, the engine system comprising of a first linear exhaust gas sensor disposed in a first exhaust passage to measure air fuel exhausted from the first cylinder group; a first switching type exhaust gas sensor disposed in a second exhaust passage to measure air-fuel exhausted from the second cylinder group; a second linear exhaust gas sensor disposed downstream of a junction between the first exhaust passage and the second exhaust passage; and a controller configured to validate a reading of the first linear exhaust gas sensor during the first mode of engine operation based on a reading of the second linear exhaust gas sensor when a lean air-fuel ratio is co
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: September 9, 2008
    Assignee: Ford Global Technologies, LLC
    Inventors: Tobias Pallett, Gopichandra Surnilla, James Kerns, Suzanne Wait
  • Publication number: 20080196702
    Abstract: A gas sensor diagnostic method includes: a fuel supply detecting step of detecting an interruption of a fuel supply to the internal combustion engine, and a restart of the fuel supply after the interruption of the fuel supply; a response time period accumulating step of determining a response time period by accumulating a first time period that the sensor output value reaches from a first threshold value to a second threshold value after the detection of the interruption of the fuel supply, and a second time period that the sensor output value reaches from a third threshold value to a fourth threshold value after the detection of the restart of the fuel supply after the interruption of the fuel supply; and an abnormal state diagnosing section of determining an abnormal state of the gas sensor when the response time period is greater than a predetermined time period.
    Type: Application
    Filed: February 19, 2008
    Publication date: August 21, 2008
    Applicants: NGK SPARK PLUG CO., LTD., SUZUKI MOTOR CORPORATION
    Inventors: Reina Fukagai, Norikazu Ieda, Masahiro Tanaka, Hiroshi Inagaki, Kunihiko Takamatsu, Masaki Hirata, Takahiro Suzuki
  • Patent number: 7412820
    Abstract: An air-fuel ratio control system for an internal combustion engine having a catalyst provided in an exhaust system of the engine for purifying exhaust gases and a first oxygen concentration sensor disposed upstream of the catalyst is disclosed. The air-fuel ratio control system controls an air-fuel ratio of an air-fuel mixture supplied to the engine. A degree of response deterioration of the first oxygen concentration sensor is detected. A response delay of the first oxygen concentration sensor is compensated according to the detected degree of deterioration to calculate a compensated sensor output. The air-fuel ratio is controlled so that a detected air-fuel ratio calculated from the compensated sensor output coincides with a target air-fuel ratio. A frequency characteristic of the compensation is adjusted according to the detected degree of deterioration.
    Type: Grant
    Filed: March 14, 2007
    Date of Patent: August 19, 2008
    Assignee: Honda Motor Co., Ltd.
    Inventors: Jun Iida, Hidetaka Maki, Yukio Suehiro
  • Patent number: 7389637
    Abstract: A diagnostic equipment for an exhaust gas cleaning apparatus installed for an engine, comprising a misfire detector which detects the misfire of the engine, and a secondary-air-system failure detector which detects the failure of a secondary air system. An index corrector corrects a deterioration index calculated by a deterioration-index calculator, in accordance with the detected result of the detector. A deterioration decision unit decides if the diagnostic equipment has failed, by the use of the corrected deterioration index. In a case where the extent of the misfire or the like is severe, a decision interrupter interrupts the decision of the deterioration decision unit. Thus, even when the misfire of the engine or the failure of the secondary air system has occurred, the detection of the deterioration of a catalyst does not err. It is therefore avoided to erroneously replace the catalyst which has not deteriorated yet, or to run the engine in spite of the deterioration of the catalyst.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: June 24, 2008
    Assignee: Hitachi, Ltd.
    Inventors: Yutaka Takaku, Toshio Ishii
  • Patent number: 7387011
    Abstract: A diagnosis device calculates a lean-direction responsiveness characteristic and a rich-direction responsiveness characteristic of the exhaust gas sensor. The lean-direction responsiveness represents a responsiveness of the sensor in a case that an air-fuel ratio is controlled in such a manner as to be varied in a lean direction. The rich-direction responsiveness represents a responsiveness of the sensor in a case that the air-fuel ratio is controlled in such a manner as to be varied in a rich direction. The diagnosis device determines whether the exhaust gas sensor deteriorates based on at least one of the lean-direction responsiveness characteristic and the rich-direction responsiveness characteristic, and on a comparison result between the lean-direction responsiveness characteristic and the rich-direction responsiveness characteristic.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: June 17, 2008
    Assignee: Denso Corporation
    Inventors: Kenichi Fujiki, Yoshinori Maegawa, Jonathan Saunders, Iain Watson
  • Patent number: 7311093
    Abstract: An element crack detecting apparatus for an oxygen sensor detects a sensor output voltage for an abnormality detection period after a fuel cut-off is started during operation of an engine. When the output voltage becomes negative, an abnormality counter is counted up. When the abnormality counter value reaches a determination value, it is determined that the element crack is present. The abnormality detection period is variably set in response to an engine rotational speed, an intake air quantity and the mixture state immediately before the fuel cut-off is effected. The determination value is variably set in response to the oxygen sensor temperature and the mixture state immediately before the fuel cut-off is effected. Further, the determination value is variably set in response to a magnitude of the negative voltage of the oxygen sensor.
    Type: Grant
    Filed: July 10, 2006
    Date of Patent: December 25, 2007
    Assignee: Denso Corporation
    Inventors: Tsutomu Hayashi, Hajime Nomura, Yoshitaka Uematsu, Toshiaki Iwashita, Kensuke Mizui
  • Patent number: 7293557
    Abstract: An abnormality detecting apparatus includes an air/fuel ratio sensor that detects an air/fuel ratio within a range including the stoichiometric air/fuel ratio, an admittance detector for detecting an admittance of the sensor, and a temperature detector for detecting a temperature of the sensor. This apparatus detects an abnormality of the sensor when the detected temperature is at a first temperature which is higher than an activation temperature of the sensor and the detected admittance is less than a first determining value. The apparatus also detects a disconnection abnormality of the sensor when the detected temperature is at a second temperature, which is higher than a minimum temperature at which admittance can be detected for a normally operation and lower than the first temperature, and the detected admittance is less than a second determining value for determining disconnection of the sensor which is less than the first determining value.
    Type: Grant
    Filed: July 3, 2006
    Date of Patent: November 13, 2007
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takashi Nakamura, Kazunori Kato
  • Patent number: 7286926
    Abstract: A deterioration detecting apparatus for an exhaust gas sensor of an internal combustion engine, the exhaust gas sensor including a sensor element and a heater that heats the sensor element, computes a first sensor characteristic parameter, which is related to a characteristic of the sensor element, by estimating an interchange state of thermal energy between the sensor element and a periphery of the sensor element. The deterioration detecting apparatus senses impedance of the sensor element. The deterioration detecting apparatus computes a second sensor characteristic parameter, which is related to the characteristic of the sensor element, based on the sensed impedance. The deterioration detecting apparatus determines a degree of deterioration of the exhaust gas sensor by comparing the first sensor characteristic parameter and the second sensor characteristic parameter.
    Type: Grant
    Filed: July 5, 2006
    Date of Patent: October 23, 2007
    Assignee: Denso Corporation
    Inventors: Yoshiyuki Gotoh, Hisashi Iida, Hiroshi Tashiro
  • Patent number: 7278414
    Abstract: A diagnostic testing system for a vehicle comprising an oxygen sensor having a heating element for heating the oxygen sensor to its minimum operational temperature, an analyzer having a user interface, a communications link between the analyzer and the vehicle to obtain data from the oxygen sensor, and a diagnostic heuristic analyzing the data and confirming proper operation of the heating element, the diagnostic heuristic being adapted to generate an output and transmit the output to the user interface, the output including the results generated by analysis of the data by the diagnostic heuristic.
    Type: Grant
    Filed: April 29, 2005
    Date of Patent: October 9, 2007
    Assignee: Delphi Technologies, Inc.
    Inventor: Earl D. Diem
  • Patent number: 7278405
    Abstract: A fuel injection system for automotive diesel engine is provided which is equipped with a fuel pressure sensor working to measure the pressure of fuel in an accumulator and a pressure-reducing valve working to drain the fuel from the accumulator. The system is designed to ensure enhanced reliability of diagnosis of the pressure-reducing valve. The system works to make a temporal diagnosis of the pressure-reducing valve based on the behavior of the pressure in the accumulator upon opening of the pressure-reducing valve after an ignition switch is turned off. After elapse of a given period of time, when it is determined that a value of the pressure in the accumulator, as measured by the fuel pressure sensor, lies near the atmospheric pressure, the system determines that the fuel pressure sensor is operating properly and fixes the temporal diagnosis of the pressure-reducing valve ultimately.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: October 9, 2007
    Assignee: Denso Corporation
    Inventor: Tomohiro Takahashi
  • Patent number: 7254474
    Abstract: In a diagnosis apparatus for an internal combustion engine which determines the abnormality of a linear A/F sensor which is disposed on the upstream side of a catalyst of the engine and detects the A/F of exhaust gas, the apparatus includes a response/gain deterioration detection unit that separately detects the response deterioration in which the response of the linear A/F sensor is delayed and the gain deterioration in which the detection sensitivity of the linear A/F sensor is abnormal.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: August 7, 2007
    Assignee: Hitachi, Ltd.
    Inventors: Yoichi Iihoshi, Shin Yamauchi, Toshio Hori, Yoshikuni Kurashima
  • Patent number: 7225801
    Abstract: A multi-cylinder group engine system operable in at least a first mode and a second mode, where in the first mode a first and second cylinder group combust air and fuel with a lean air-fuel ratio, and where in the second mode at least one of the first and second cylinder groups combusts air and fuel and the other one of the first and second cylinder groups pumps air without injected fuel, the engine system comprising of a fuel injection activity sensor coupled to each cylinder in the first and second cylinder groups; a exhaust gas sensor disposed in an exhaust passage to measure air fuel exhausted from the engine; and a controller configured to transition out of the first mode responsive to detection of exhaust gas sensor degradation and to transition out of the second mode responsive to detection of fuel injection sensor degradation. In one example, the transition out of the second mode may be slower than the transition out of the first mode in response to the respective degradation.
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: June 5, 2007
    Assignee: Ford Global Technologies, LLC
    Inventors: Tobias Pallett, Suzanne Wait, Gopichandra Surnilla
  • Patent number: 7216639
    Abstract: When carrying out abnormality determination for an air-fuel ratio sensor 33 by comparison of an average value tave of all diagnostic values t(n) and an abnormality determination value C, the abnormality determination value C is corrected using an average value ?tave for the disturbance correction values ?t(n). A disturbance correction value ?t(n) is derived by subtracting a correction reference value A, which is a diagnostic value with a normal air-fuel ratio sensor 33 when there is no disturbance, from the diagnostic value t(n). The present invention provides the abnormality diagnosis device for the air-fuel ratio sensor that can acquire highly precise diagnosis results without lowering frequency of diagnosis accurately taking into consideration the influence of disturbance.
    Type: Grant
    Filed: May 22, 2006
    Date of Patent: May 15, 2007
    Assignees: Fuji Jukogyo Kabushiki Kaisha, Hitachi, Ltd.
    Inventors: Hisanori Ozaki, Akira Kiyomura
  • Patent number: 7201160
    Abstract: An air-fuel ratio sensor monitor is provided which is designed to monitor reactive characteristics or response rates of an air-fuel ratio sensor when an air-fuel ratio of a mixture to an internal combustion engine is changing to a rich side and to a lean side. The monitored response rates are used in determining whether the sensor is failing or not, in determining the air-fuel ratio of the mixture accurately, or in air-fuel ratio control of the engine.
    Type: Grant
    Filed: September 13, 2004
    Date of Patent: April 10, 2007
    Assignee: Denso Corporation
    Inventors: Naoki Yoshiume, Yukihiro Yamashita
  • Patent number: 7146972
    Abstract: An air fuel ratio control system includes an exhaust gas sensor to sense an oxygen concentration in an exhaust passage of an internal combustion engine, and a controller. The controller is configured to judge that the exhaust gas sensor is in an active state, by monitoring a decrease of an output of the exhaust gas sensor from a level greater than a first predetermined value, to a level smaller than or equal to the predetermined first predetermined value, and to allow the air fuel ratio control when the exhaust gas sensor is judged to be in the active state.
    Type: Grant
    Filed: September 16, 2005
    Date of Patent: December 12, 2006
    Assignee: Hitachi, Ltd.
    Inventor: Shigeo Ohkuma
  • Patent number: 7134429
    Abstract: A device and a method for controlling an internal combustion engine in which, starting from the comparison between a measured and an expected value for a lambda signal, a correction value is specified for a fuel signal characterizing the fuel quantity, or an air signal characterizing the air quantity. Depending on the operating state, an output signal of a characteristics map and/or the output signal of a closed-loop control are/is used as the correction value.
    Type: Grant
    Filed: February 28, 2005
    Date of Patent: November 14, 2006
    Assignee: Robert Bosch GmbH
    Inventors: Christian Mader, Stefan Michael
  • Patent number: 7117664
    Abstract: A diagnostic equipment for an exhaust gas cleaning apparatus installed for an engine, comprising a misfire detector which detects the misfire of the engine, and a secondary-air-system failure detector which detects the failure of a secondary air system. An index corrector corrects a deterioration index calculated by a deterioration-index calculator, in accordance with the detected result of the detector. A deterioration decision unit decides if the diagnostic equipment has failed, by the use of the corrected deterioration index. In a case where the extent of the misfire or the like is severe, a decision interrupter interrupts the decision of the deterioration decision unit. Thus, even when the misfire of the engine or the failure of the secondary air system has occurred, the detection of the deterioration of a catalyst does not err. It is therefore avoided to erroneously replace the catalyst which has not deteriorated yet, or to run the engine in spite of the deterioration of the catalyst.
    Type: Grant
    Filed: August 23, 2004
    Date of Patent: October 10, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Yutaka Takaku, Toshio Ishii