With Addition Of Secondary Fluid (e.g., Fuel Or Exhaust Gas) Patents (Class 123/698)
  • Patent number: 11661898
    Abstract: Evaporative emission purge control systems and methods use a cost factor to incentivize operation of an internal combustion at torques favorable for purge. An evaporative emission control system is configured to collect fuel vapor. A controller determines whether an operating speed of the internal combustion engine is within a target purge region that is bounded by a lower speed threshold and an upper speed threshold of the internal combustion engine. When the operating speed of the internal combustion engine is within the target purge region, the controller applies a cost factor to operating points for the internal combustion engine, and based on the cost factor, the operating points are set to include an operating torque for the internal combustion engine to generate an intake pressure of the internal combustion engine at a level below atmospheric pressure for a purge of the evaporative emission control system.
    Type: Grant
    Filed: July 11, 2022
    Date of Patent: May 30, 2023
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Yiran Hu, Kee Y Kim, Jacob Kyle Lobbestael
  • Patent number: 11306672
    Abstract: A system and method for a variable displacement internal combustion engine using different types of pneumatic cylinder springs on skipped working cycles to control engine and aftertreatment system temperatures are described. The system and method may be used to rapidly heat up the aftertreatment system(s) and/or an engine block of the engine following a cold start by using one or more different types of pneumatic cylinder springs during skipped firing opportunities. By rapidly heating the aftertreatment system(s) and/or engine block, noxious emissions such as hydrocarbons, carbon monoxide, NOx and/or particulates, following cold starts are significantly reduced.
    Type: Grant
    Filed: April 7, 2021
    Date of Patent: April 19, 2022
    Assignee: Tula Technology, Inc.
    Inventors: Matthew A. Younkins, Xi Luo
  • Patent number: 11092095
    Abstract: An engine system includes an intake pipe, an exhaust pipe, an exhaust gas recirculation (EGR) pipe, an injection amount deriver, and a fuel injector. The intake pipe is configured to direct intake air into a combustion chamber of an engine. The exhaust pipe is configured to receive exhaust gas discharged from the combustion chamber. The EGR pipe is coupled to the exhaust pipe and the intake pipe and configured to recirculate the exhaust gas into the intake pipe as EGR gas. The injection amount deriver is configured to derive a target injection amount of fuel using a mass of air contained in the EGR gas or a mass of fuel contained in the EGR gas and using a preset target air excess coefficient. The fuel injector is configured to inject an amount of fuel corresponding to the target injection amount derived by the injection amount deriver into the combustion chamber.
    Type: Grant
    Filed: June 1, 2020
    Date of Patent: August 17, 2021
    Assignee: SUBARU CORPORATION
    Inventor: Gaku Ito
  • Patent number: 10851725
    Abstract: A fuel content detection system is disclosed. The fuel content detection system may include an engine control module (ECM) to receive a measurement of a parameter. The parameter may correlate with an amount of a substance in a fuel that is being consumed in an engine. The ECM may determine an estimation of the parameter based on a model. The model may use a predetermined value associated with the amount of the substance, and the engine may be configured to consume a designated type of fuel that includes an amount of the substance that corresponds to the predetermined value. The ECM may determine, based on the estimation and the measurement not being within a threshold range, that the fuel is not the designated type of fuel and perform an action associated with the engine.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: December 1, 2020
    Assignee: Caterpillar Inc.
    Inventor: Sylvain Charbonnel
  • Patent number: 10844767
    Abstract: The present disclosure relates to a device and a method for removing a carbon from an oxygen sensor. The device may include an oxygen sensor installed in a gas exhaust line of a vehicle to measure an oxygen content in an exhaust gas, a valve for transferring a high-pressure air flow to the oxygen sensor, a valve actuator for driving the valve, and a controller for controlling the valve actuator to open the valve when an abnormality occurs in the oxygen sensor. When the abnormality has occurred in the oxygen sensor, the valve for transferring the high-pressure air flow is opened, and a temperature of zirconia provided in the oxygen sensor is raised to remove a carbon deposited on the oxygen sensor.
    Type: Grant
    Filed: May 1, 2019
    Date of Patent: November 24, 2020
    Assignees: HYUNDAI MOTOR COMPANY, KIA MOTORS CORPORATION
    Inventors: Yong Jun Choi, Sung Jong Oh, Sung Moon Cho, Yun Sik Jang
  • Patent number: 10753292
    Abstract: A method of controlling an engine during idle purge of a canister includes: determining whether current operation information of a vehicle satisfies an idle purge condition, determining whether canister purge learning time performed during a part load condition is a set time or more when a purge operation condition is satisfied, and performing idle purge of the canister when the canister purge learning time performed during the part load condition is the set time or more.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: August 25, 2020
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Tae-Gon Noh, Byung-Hoon Cho
  • Patent number: 10746137
    Abstract: A tank venting system for an internal combustion engine includes a tank, which is connected via a tank vent to a sorption reservoir for a temporary storage of fuel from a tank venting flow. A purge air pump is provided for feeding regenerated fuel from the sorption reservoir via a purge air flow into an intake air flow to the internal combustion engine. A controller is configured to control the purge air pump in such a way that the purge air flow can be adjusted with regard to its pressure, its mass and/or its volume, thus ensuring that a metering of the regenerated fuel via the purge air flow into the intake air flow takes place in accordance with an operating state of the internal combustion engine. A method for regenerating a sorption reservoir is also provided.
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: August 18, 2020
    Assignee: Volkswagen Aktiengesellschaft
    Inventor: Jens Wodausch
  • Patent number: 10527008
    Abstract: Disclosed is a diagnostic method of diagnosing sticking of a canister purge valve comprising steps of: controlling opening and closing of the canister purge valve in order to diagnose sticking of the canister purge valve and calculating a throttle learning value for acquiring variation in an air inflow amount based on an intake air pressure sensor and an throttle opening amount in each of control sections; comparing the throttle learning values calculated in each of control sections and acquiring variation in the air inflow amount flowing from the canister purge valve when the canister purge valve is opened and closed; and determining whether the canister purge valve is stuck or not based on the variation in the air inflow amount.
    Type: Grant
    Filed: July 11, 2016
    Date of Patent: January 7, 2020
    Assignee: Hyundai Autron Co., Ltd
    Inventors: Dong-Ha Kim, Jong-Seok Kim
  • Patent number: 10486681
    Abstract: Methods and systems are provided for managing torque arbitration for a hybrid powertrain. In one example, a method may include operating the hybrid powertrain over a predetermined route with a torque arbitration, and updating the torque arbitration based on a vehicle mass.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: November 26, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Anthony Mario D'Amato, Karin Lovett, Mark Warren Muddiman, John Jeffrey Pfeiffer
  • Patent number: 10455730
    Abstract: An example system includes an enclosure housing electronics that generate heat. The enclosure includes a vent leading to an exterior of the enclosure. The vent is configured to allow the heat generated by the electronics to escape to the exterior. The enclosure includes an inlet configured to direct air into the enclosure. The vent and the inlet are arranged so that the heat escaping from the vent suctions the air through the inlet. The example system also includes a radiator having an input port and an output port. The input port is located exterior to the enclosure and the output port is connected to the inlet so that the air suctioned through the inlet causes air from the exterior to enter the radiator through the input port and to pass to the output port. The radiator is submerged, at least in part, in a coolant.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: October 22, 2019
    Assignee: Saudi Arabian Oil Company
    Inventors: Mohamed Y. Haj-Maharsi, Yasser A. Al-Howeish
  • Patent number: 10267249
    Abstract: Systems are provided for detecting a change in performance of an engine component. In one example, a system includes a first pressure sensor of a first exhaust manifold coupled to a first subset of cylinders of an engine, a second pressure sensor of a second exhaust manifold coupled to a second subset of cylinders of the engine, a passage coupling the first exhaust manifold to an intake manifold, and a controller configured to detect a change in performance of any cylinder of the engine based on frequency content from the first pressure sensor and from the second pressure sensor during both a first mode where no exhaust gas from the first exhaust manifold is provided to the intake manifold, and during a second mode where all exhaust gas from the first exhaust manifold is provided to the intake manifold, and adjust an operating parameter responsive to the change in performance.
    Type: Grant
    Filed: April 27, 2016
    Date of Patent: April 23, 2019
    Assignee: GE Global Sourcing LLC
    Inventors: Milan Palinda Karunaratne, Paul Lloyd Flynn, James Robert Schreiner
  • Patent number: 10167790
    Abstract: To provide a controller and a control method for an internal combustion engine capable of reducing the calculation error of recirculation exhaust gas amount due to changes with time of the internal combustion engines, and humidity change of intake air, and also capable of reducing the calculation error of recirculation exhaust gas amount at transient operation. The controller and the control method for the internal combustion engine calculates humidity detecting EGR rate based on intake-air humidity and manifold humidity, calculates humidity detecting opening area which realizes humidity detecting recirculation flow rate calculated based on humidity detecting EGR rate, calculates learned opening area corresponding to present opening degree of EGR valve using learning value of opening area calculated based on humidity detecting opening area, and calculates flow rate of recirculation exhaust gas for control based on learned opening area.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: January 1, 2019
    Assignee: Mitsubishi Electric Corporation
    Inventors: Hideki Hagari, Michihisa Yokono
  • Patent number: 10071650
    Abstract: A mobile object comprising: a fuel cell; an cabin that is separated from an installing space where the fuel cell is located; an air conditioning device performs an air conditioning of the cabin; a controller controls an operation of the air conditioning device; and a gas concentration detection unit that is installed in the installing space and detects a concentration of gas of a same type as fuel gas supplied to the fuel cell. The controller switches an operation mode of the air conditioning device to an internal air circulation mode from another mode when the concentration of the gas is equal to or higher than a predetermined upper-limit threshold.
    Type: Grant
    Filed: October 27, 2015
    Date of Patent: September 11, 2018
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Hiromu Saito
  • Patent number: 9995234
    Abstract: Methods and systems are provided for accurately estimating intake aircharge based on the output of an intake oxygen sensor while flowing EGR, purge, or PCV hydrocarbons to the engine. The unadjusted aircharge estimate is used for engine fuel control while the hydrocarbon adjusted aircharge estimate is used for engine torque control. A controller is configured to sample the oxygen sensor at even increments in a time domain, stamp the sampled data in a crank angle domain, store the sampled data in a buffer, and then select one or more data samples corresponding to a last firing period from the buffer for estimating the intake aircharge.
    Type: Grant
    Filed: March 21, 2016
    Date of Patent: June 12, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Gopichandra Surnilla, James Alfred Hilditch, Ross Dykstra Pursifull, Michael McQuillen, Martin Brown, Imtiaz Ali, Naginder Gogna
  • Patent number: 9897044
    Abstract: A control system of an engine is provided. The control system includes an exhaust emission control catalyst provided in an exhaust passage, a deceleration fuel cutoff module for performing a deceleration fuel cutoff when a deceleration fuel cutoff condition is satisfied in an engine decelerating state, a purging unit for performing a purge to supply a purge gas to an intake passage during the deceleration fuel cutoff, an evaporated fuel supply amount estimating module for estimating a supply amount of evaporated fuel to the intake passage when the purge is performed, and a catalyst temperature estimating module for estimating a temperature of the exhaust emission control catalyst when the purge is performed, based on the supply amount of the evaporated fuel. The purging unit controls a supply flow rate of the purge gas to the intake passage when the purge is performed, based on the exhaust emission control catalyst temperature.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: February 20, 2018
    Assignee: Mazda Motor Corporation
    Inventors: Kazuaki Tanaka, Yuusou Sakamoto, Hiroshi Tsuboi
  • Patent number: 9869663
    Abstract: A gas sensor apparatus including a gas sensor (10) which outputs an output value corresponding to the concentration of a specific gas component, and a computation section (30) which calculates a specific component concentration based on the output value output and a pressure value representing the pressure of the gas. The computation section (30) includes pressure change rate calculation means (31), pressure change rate judgment means (32), correction amount calculation means (33), and output correction means (34). Also disclosed is a concentration measurement method using the gas sensor.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: January 16, 2018
    Assignee: NGK SPARK PLUG CO., LTD.
    Inventors: Masao Tsuzuki, Toyohiro Tsukahara
  • Patent number: 9726091
    Abstract: Active control of one or more exhaust gas recirculation loops is provided to manage and EGR fraction in the charge flow to produce desired operating conditions and/or provide diagnostics in response to at least one of an oxygen concentration and a NOx concentration in the charge flow and in the exhaust flow.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: August 8, 2017
    Assignee: Cummins Inc.
    Inventors: Michael J. Ruth, Michael J. Cunningham, Cary A. Henry
  • Patent number: 9631567
    Abstract: A fuel control system for a vehicle includes a pressure compensation module that compensates an intake oxygen signal based on an intake pressure signal and that generates a compensated intake oxygen signal. A blow-by estimation module generates an estimated blow-by flow. A purge flow estimation module estimates the purge flow based on the compensated intake oxygen signal and the estimated blow-by flow. A fuel control estimation module reduces fueling to injectors of an engine of the vehicle based on the purge flow.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: April 25, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: B. Jerry Song, Martino Casetti, Scott Jeffrey, Louis A. Avallone
  • Patent number: 9482189
    Abstract: Methods and systems are provided for adjusting a reference voltage for an intake manifold oxygen sensor based on ingestion of hydrocarbons from a fuel system canister and/or an engine crankcase. During conditions when purge or crankcase ventilation hydrocarbons are ingested in the intake aircharge, the intake oxygen sensor is transitioned from operating at a lower reference voltage to a higher reference voltage where the effects of the ingested hydrocarbons on the sensor output are nullified. An EGR dilution of the intake aircharge is estimated based on the output of the sensor at the higher reference voltage while an amount of hydrocarbons ingested is estimated based on a difference between sensor outputs at the higher and lower reference voltages.
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: November 1, 2016
    Assignee: Ford Global Technologies, LLC
    Inventors: Gopichandra Surnilla, Daniel A. Makled, James Alfred Hilditch, Richard E. Soltis, Michael Howard Shelby, Daniel Joseph Styles
  • Patent number: 9309838
    Abstract: Methods and systems are provided for indicating water at an oxygen sensor based on power consumption of a heating element of the oxygen sensor. In one example, water may be indicated at an oxygen sensor positioned in an intake of an engine responsive to power consumption of the heating element of the oxygen sensor increasing above a baseline level. Engine operating parameters may then be adjusted based on the water indication and the power consumption.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: April 12, 2016
    Assignee: Ford Global Technologies, LLC
    Inventors: Gopichandra Surnilla, Richard E. Soltis, Dan A. Makled, Timothy Joseph Clark
  • Patent number: 9284923
    Abstract: A fuel vapor recovery apparatus to be mounted on a vehicle having a fuel tank has an adsorbent canister capable of adsorbing and desorbing fuel vapor vaporized in the fuel tank, a vapor path providing communication between the fuel tank and the adsorbent canister, a purge path providing communication between the adsorbent canister and an intake path of an internal combustion engine, a purge valve configured to open and close the purge path, a blocking valve configured to open and close the vapor path and having a valve body, and a regulator for controlling the purge valve and the blocking valve. The fuel tank is sealed when the blocking valve is closed. The fuel tank is configured to be depressurized by opening the blocking valve. The blocking valve is composed of a motor valve that has a driving motor and can adjust an opening amount by controlling a stroke of the valve body.
    Type: Grant
    Filed: October 9, 2013
    Date of Patent: March 15, 2016
    Assignee: AISAN KOGYO KABUSHIKI KAISHA
    Inventors: Junya Kimoto, Shinji Murai, Sunao Kitamura
  • Patent number: 9200600
    Abstract: A fuel management system for a marine propulsion device provides a series of intermediate venting commands to a canister purge valve which controls the pressure decay within a fuel supply module in such a way that both the lift pump and high pressure pump within the module are provided with appropriate pressures to allow them to operate satisfactorily.
    Type: Grant
    Filed: July 30, 2013
    Date of Patent: December 1, 2015
    Assignee: Brunswick Corporation
    Inventors: Christopher J. Taylor, Brian L. Merten, Matthew W. Snyder
  • Patent number: 9188045
    Abstract: A method of monitoring an exhaust gas sensor coupled in an engine exhaust in an engine is provided. The method includes adjusting engine operation responsive to exhaust gas sensor degradation, the degradation identified during deceleration fuel shut-off (DFSO) and compensated based on whether vapor purge operation is occurring in the engine during DFSO.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: November 17, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Adam Nathan Banker, Michael James Ulrich, Imad Hassan Makki, James Michael Kerns
  • Patent number: 9181904
    Abstract: Methods and systems are provided for adjusting an EGR valve and one or more intake throttles responsive to the output of an intake oxygen sensor to provide a desired amount of EGR flow while maintaining engine torque. The adjustments are coordinated to improve distributed control of the EGR valves and intake throttles, and enable EGR flow even when one actuator is limited.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: November 10, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Mrdjan J. Jankovic, Julie Helen Buckland, Amey Y. Karnik, Daniel Joseph Styles
  • Patent number: 9121501
    Abstract: Construction is achieved that is capable of ensuring reliability of a learned value for a position of an adjustment member 24 which becomes the criterion for the transmission gear ratio control of a toroidal continuously variable transmission 4. As conditions for allowing learning of a controller 11 that controls the adjustment member 24, in which the controller 11 adjusts the transmission gear ratio of the toroidal continuously variable transmission 4 to a state in which the rotation speed of an output shaft 14 becomes “0”, learns and saves in memory the position of the adjustment member 24 in this state as the position in which the output shaft 14 is stopped while an input shaft 3 is rotated as is, the controller 11 determining whether or not the engine 1 rpm is unstable, and prohibiting execution of this learning control if the engine 1 rpm is determined as being unstable due to the engine 1 rpm fluctuating greater than the normal amount of fluctuation during idling or the like, are included.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: September 1, 2015
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Takumi Shinojima, Hiromasa Nakamura
  • Patent number: 9038613
    Abstract: As one example, a fuel rail assembly for supplying pressurized fuel to a plurality of cylinders of an engine is provided. The fuel rail assembly includes a fuel rail housing defining an internal fuel rail volume having at least a first region and a second region; a fuel separation membrane element disposed within the fuel rail housing that segregates the first region from the second region. The membrane element can be configured to pass a first component of a fuel mixture such as an alcohol through the membrane element from the first region to the second region at a higher rate than a second component of the fuel mixture such as a hydrocarbon. The separated alcohol and hydrocarbon components can be provided to the engine in varying relative amounts based on operating conditions.
    Type: Grant
    Filed: October 8, 2013
    Date of Patent: May 26, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Ross Dykstra Pursifull, Mark Allen Dearth, Tom G. Leone
  • Patent number: 9038598
    Abstract: A vehicle is provided with an engine, an H2 and CO tank, a CO2 reclaimer, an electrolytic solution tank, an electrolyzer, a water tank and the like. During operation of the engine, an exhaust gas is introduced into an absorbing liquid in the CO2 reclaimer so as to recover CO2 in the exhaust gas and to store the same in the electrolytic solution tank. While supplying the absorbing liquid having absorbed CO2 and water to the electrolyzer from the electrolytic solution tank and the water tank, respectively, electric power is supplied to the electrolyzer. As a result, a mixed gas composed of CO and H2 from CO2 and water. The generated mixed gas is temporarily stored in the H2 and CO tank and is supplied to the engine.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: May 26, 2015
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hideyuki Nishida, Masaki Shitara, Yasushi Ito
  • Patent number: 8985088
    Abstract: Various systems and method for controlling exhaust gas recirculation (EGR) in an internal combustion engine are provided. In one embodiment, a method includes injecting fuel to a subset of cylinders that includes less than all cylinders of a first cylinder group to obtain a target EGR rate. The first cylinder group provides exhaust gas through an exhaust gas recirculation (EGR) passage structure fluidly coupled between the first cylinder group and an intake passage structure. The method further includes injecting fuel to at least one cylinder of a second cylinder group. The second cylinder group provides substantially no exhaust gas through the EGR passage structure.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: March 24, 2015
    Assignee: General Electric Company
    Inventors: Neil Xavier Blythe, Shawn Michael Gallagher, James Robert Mischler, Luke Henry
  • Patent number: 8857418
    Abstract: A method for preparing an internal combustion (IC) engine component of a hybrid automotive powertrain for shutdown so as to enable clean restart is disclosed herein. The method includes determining if the IC engine is about to enter a shutdown mode. The method includes determining a number of engine run cycles to fill an intake manifold of the IC engine with clean air, if it is determined the IC engine is about to enter the shutdown mode. The method includes running the IC engine for the determined number of cycles to fill the intake manifold of the IC engine with clean air before shutting the IC engine down.
    Type: Grant
    Filed: July 12, 2011
    Date of Patent: October 14, 2014
    Assignee: Chrysler Group LLC
    Inventors: Timothy A. Coatesworth, Joseph Roos, Kenneth P. DeGroot, Sashidhar Velnati, Goro Tamai
  • Patent number: 8746216
    Abstract: An internal combustion engine may include a piston engine having at least one combustion chamber and a fresh air system for feeding fresh air to the at least one combustion chamber including at least one fresh air line. A bloom mixer may be arranged in the fresh air line and configured to divide a fresh air flow conducted in the fresh air line into at least two partial flows and reunite these again on the outflow side subject to the formation of a turbulence.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: June 10, 2014
    Assignee: Mahle International GmbH
    Inventors: Alfred Elsässer, Bernhardt Lüddecke
  • Patent number: 8733298
    Abstract: A method for operating an internal combustion engine includes monitoring oxygen concentration in an exhaust gas feedstream, a mass flowrate of intake air, and a commanded fuel pulse of fuel. A blend ratio of biodiesel fuel and petrodiesel fuel of the fuel is determined. Engine operation is controlled in response to the blend ratio of biodiesel fuel and petrodiesel fuel of the fuel.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: May 27, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Ibrahim Haskara, Yue-Yun Wang
  • Patent number: 8725389
    Abstract: A control device for a multi-cylinder internal combustion engine executes feedback control such that an air-fuel ratio detected by an air-fuel ratio detecting unit becomes a target air-fuel ratio, carries out external EGR, and, when an abnormal deviation that an air-fuel ratio of at least any one of cylinders deviates from the target air-fuel ratio has occurred during the feedback control, detects the abnormal deviation and an abnormal cylinder. When the abnormal deviation has been detected during feedback control and external EGR, the control device corrects the target air-fuel ratio to compensate for a detection error of the air-fuel ratio detecting unit due to the influence of specific components of exhaust gas. The control device changes the correction mode on the basis of whether the abnormal cylinder causes more intensive gas flow or equal or less intensive gas flow against the air-fuel ratio detecting unit than the other cylinders.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: May 13, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tomohiro Shinagawa, Yuuichi Katou
  • Patent number: 8718902
    Abstract: With a control apparatus of a multiple cylinder internal combustion engine, external EGR that circulates exhaust gas in an exhaust passage to an intake passage is executed, and an air-fuel ratio is feedback-controlled such that an air-fuel ratio of the exhaust gas comes to match a predetermined target air-fuel ratio. When a rich deviation in which the air-fuel ratio of a portion of cylinders is off to a rich side from the target air-fuel ratio is detected, a parameter indicative of an amount of the rich deviation is calculated. The target air-fuel ratio is corrected to the rich side according to the calculated parameter. A value of a parameter at which the rich correction is started is changed according to whether external EGR is being executed.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: May 6, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yuuichi Katou, Tomohiro Shinagawa
  • Patent number: 8700290
    Abstract: When the ratio of the amount of vaporized fuel (purge amount) to be introduced into an intake passage of an engine from a fuel tank through a purge passage pipe, a purge control valve, etc. to the total amount of fuel (total fuel amount) to be supplied to the engine is large, an abnormality determination system acquires, as a parameter Pon, the air-fuel ratio imbalance index value that increases as the difference between the air-fuel ratios of the respective cylinders increases. When the purge amount is small relative to the total fuel amount, the determination system acquires the air-fuel ratio imbalance index value as a parameter Poff. When the difference between the parameters Pon and Poff is less than a predetermined value and at least one of these parameters is greater than a predetermined threshold value, the determination system determines that an inter-cylinder air intake amount variation abnormality is occurring.
    Type: Grant
    Filed: July 18, 2011
    Date of Patent: April 15, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroshi Miyamoto, Yasushi Iwazaki
  • Patent number: 8635993
    Abstract: The invention relates to an air-fuel ratio control device of an internal combustion engine, comprising a plurality of means for independently introducing into each combustion chamber an exhaust gas discharged from combustion chambers to an exhaust passage. When at least one exhaust gas introduction means is under an exhaust gas introduction shortage state, a target value of an air-fuel ratio of a mixture gas is changed depending on whether an exhaust gas introduction control for introducing the exhaust gas into the combustion chamber by the exhaust gas introduction means is performed.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: January 28, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takeshi Genko, Kenya Maruyama, Tsukasa Abe, Yousuke Matsumoto
  • Patent number: 8600608
    Abstract: A communication system for a vehicle includes: a plurality of controllers mounted on the vehicle; a data communication network for coupling the plurality of controllers with each other so that the controllers transmit data to and receive data from each other via the data communication network; a failure diagnosis device for diagnosing whether each controller is normal; a failure diagnosis activation device for activating the failure diagnosis device; and an avoiding condition setting device for setting an avoiding condition, which provides to avoid execution of the failure diagnosis when the failure diagnosis device is activated.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: December 3, 2013
    Assignees: Denso Corporation, Toyota Jidosha Kabushiki Kaisha, Aisin AW Co., Ltd.
    Inventors: Hiroki Inoue, Yuichi Ochiai, Tomohiro Kani, Ichiro Usami, Takashi Wada
  • Patent number: 8554446
    Abstract: Provided is a control apparatus, which can successfully suppress that deterioration of combustion is caused in response to inflow of a large amount of blow-by gas to cylinders at the time of a valve return from a valve stop state in an internal combustion engine including a positive crankcase ventilation system and a variable valve operating mechanism that is capable of stopping at least one valve of an intake valve and exhaust valve in a closed state. A valve stop control is performed which stops the intake valve and exhaust valve in a closed state when a fuel cut of the internal combustion engine is executed. A deviation amount ?A/F between a predetermined target air fuel ratio and an actual air fuel ratio detected by an A/F sensor at the time of a valve return is obtained. A correction is performed to decrease a fuel injection amount by a fuel amount equivalent to the deviation amount ?A/F at the time of the subsequent valve returns.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: October 8, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Keisuke Sano, Kazuhiro Wakao, Takashi Nishikiori, Takashi Watanabe
  • Patent number: 8532912
    Abstract: An engine control system includes a unit which outputs a command for changing an air-fuel ratio of an exhaust gas, a unit which computes an in-cylinder oxygen concentration, a memory which stores a first value and a second value of parameters (ignition timing, injection pressure, pilot injection quantity). The first value is set in a case that the in-cylinder oxygen concentration is a first oxygen concentration. The second value is set in a case that the in-cylinder oxygen concentration is a second oxygen concentration which is higher than the first oxygen concentration. The values of the parameters are set in such a manner as to correlate to the in-cylinder oxygen concentration of during a transition period of the air-fuel ratio. The values of the parameters are obtained by an interpolation based on the first and the second value of the parameter and the in-cylinder oxygen concentration.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: September 10, 2013
    Assignee: Denso Corporation
    Inventors: Jun Kawamura, Takahiro Ono
  • Patent number: 8489309
    Abstract: In a feedback control system in which a base gain having a constant value or a variable gain is set as a feedback gain in accordance with the state of the system and an input value is calculated based on a function having, as variables, a proportional term and an integral term, the integral term is recalculated when a discriminant value obtained by substituting a base proportional term calculated using the base gain for the proportional term and a normal integral term calculated using the feedback gain for the integral term in the function is larger than an upper limit value. The integral term is recalculated in such a way that a value obtained by substituting the base proportional term for the proportional term and the recalculated integral term for the integral term in the function becomes equal to or smaller than the upper limit value.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: July 16, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Shigeki Nakayama
  • Patent number: 8469010
    Abstract: A mass flow rate of NOx which is recirculated to an intake passage with a blowby gas is obtained with high precision, and based on the result, a state of an internal combustion engine can be accurately diagnosed. A control device for an internal combustion engine of the present invention measures a NOx concentration in an intake passage downstream from a position where the blowby gas is recirculated, and similarly measures an oxygen concentration in the intake passage downstream from the aforesaid position. Further, the control device measures a mass flow rate of fresh air taken into the intake passage. The control device calculates a mass flow rate of the blowby gas recirculated to the intake passage from the oxygen concentration and the mass flow rate of the fresh air. Next, the control device calculates a mass flow rate of all gases in the intake passage from the mass flow rate of the fresh air and the mass flow rate of the blowby gas.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: June 25, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Masahiro Inoue
  • Patent number: 8447497
    Abstract: An apparatus for determining an air-fuel ratio imbalance among cylinders based on an output value of an air-fuel ratio sensor, an imbalance determination parameter which becomes larger or smaller as a difference among air-fuel ratios becomes larger, and performs determining an air-fuel ratio imbalance among cylinders based on a result of a comparison between the imbalance determination parameter and a imbalance determination threshold. The determining apparatus calculates a purge correction coefficient which compensates for a change in the air-fuel ratio due to an evaporated fuel gas which is generated in a fuel tank, while the evaporated fuel gas is being introduced into an intake passage, and corrects a fuel injection amount with the purge correction coefficient FPG.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: May 21, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yasushi Iwazaki, Hiroshi Miyamoto, Fumihiko Nakamura, Hiroshi Sawada, Toru Kidokoro
  • Patent number: 8342140
    Abstract: A method for operating an engine with a fuel reformer is presented. In one embodiment a method for operating an engine by injecting a gaseous fuel and a liquid fuel to at least an engine cylinder is presented. The mixture of an engine cylinder may be diluted with EGR and a fraction of gaseous fuel may be increased relative to a fraction of liquid fuel injected to a cylinder in response to an operator tip-out.
    Type: Grant
    Filed: April 2, 2012
    Date of Patent: January 1, 2013
    Assignee: Ford Global Technologies, LLC
    Inventors: Gopichandra Surnilla, Thomas G. Leone
  • Patent number: 8333179
    Abstract: The invention deals with a method for operating an internal combustion engine with engine oil as the lubricant, wherein a fuel mass flow outgassing from the engine oil is ascertained and is taken into account via a map-based pilot control during the metering of a quantity of fuel supplied to the internal combustion engine and wherein a fuel/air ratio supplied to the internal combustion engine is determined. Provision is made in the method according to the invention for a mass flow offset determined from the deviation of the fuel/air ratio supplied to the internal combustion engine from a nominal value to be taken into account when the metering of the quantity of fuel supplied to the internal combustion engine occurs during an effective duration of the map-based pilot control.
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: December 18, 2012
    Assignee: Robert Bosch GmbH
    Inventors: Georg Mallebrein, Federico Buganza, Carlos Koster, Kai Jakobs, Juergen Pfeiffer, Emilie Hincker-Piocelle, Pierre-Yves Crepin
  • Patent number: 8306720
    Abstract: In a power output apparatus, when the fuel vapor concentration is high and the target purge rate is high, an operating point on a purge priority operating line is selected as a target operating point of an engine. As a result, the intake manifold negative pressure greater than that when an operating point on an optimum fuel efficiency operating line is selected, so that the flow rate of purge gas released from a canister is increased. When the fuel vapor concentration does not fall within a high-concentration range, the necessity to immediately purge fuel vapor trapped in the canister into the intake pipe is low, and thus an operating point on the optimum fuel efficiency operating line is selected to keep the engine operating at high fuel efficiency.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: November 6, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Makoto Yamazaki, Shunsuke Fushiki
  • Patent number: 8256386
    Abstract: A saddle-ride vehicle includes an engine with a front cylinder extended forward and diagonally upward from a crankcase. The engine is mounted between a front wheel and a rear wheel. A space gradually vertically extended forward is provided between a fuel tank arranged on the upside of the front cylinder and a front head cover provided to an upper part of the front cylinder. A radiator upstream water passage extended backward from an upper part of a radiator is provided in front of the front cylinder and is arranged in the space. The radiator upstream water passage is covered with a front overhead cover attached to the front cylinder. With this configuration, vehicle body components are not exposed, thereby protecting the vehicle body components. In addition, the appearance of the vehicle is efficiently enhanced.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: September 4, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Kenji Watanabe, Yoshinobu Ozaki, Bruno Conte
  • Patent number: 8136489
    Abstract: In a variable compression ratio internal combustion engine that controls the compression of an internal combustion engine by changing the volume of the combustion chamber of the internal combustion engine in an axial direction of the cylinder, when a target compression ratio (?t) based on an operating condition of the internal combustion engine is at a reference compression ratio (?0) or greater (S102), the compression ratio is changed to the target compression ratio (S103). When the target compression ratio (?t) is lower than the reference compression ratio (?0) (S102), a control is executed to change the compression ratio and also to strength the tumble flow in the combustion chamber (S104).
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: March 20, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Eiichi Kamiyama, Daisuke Akihisa
  • Patent number: 8113186
    Abstract: A multifuel internal combustion engine in which single low boiling point component fuel and at least one kind of fuel having properties different from those of the single low boiling point component fuel are introduced into a combustion chamber CC separately or together thereby operating the multifuel internal combustion engine, includes lubricant-oil temperature detecting unit means (temperature sensor 91) that detects a temperature of lubricant oil, or lubricant-oil temperature estimating unit means that estimates the temperature, and purge control unit means (electronic control unit 1) that prohibits purge control by an evaporation gas purge apparatus (evaporation gas passage 42, check valve 43, canister 44, on-off valve 45) or reduces a purge flow rate of evaporation gas in the purge control, when the detected or estimated temperature of the lubricant oil is near a boiling point temperature of the single low boiling point component fuel at which it is necessary to reduce a fuel injection amount from a fue
    Type: Grant
    Filed: February 4, 2008
    Date of Patent: February 14, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takashi Tsunooka, Takashi Watanabe, Yohei Hosokawa
  • Patent number: 8113181
    Abstract: Method to provide fugitive gases to an engine. A source of fugitive gases is directed to the air intake of the engine. A fugitive gas pipe supplies the fugitive gases to the air intake and a vent allows the fugitive gases to vent to atmosphere. A check valve in the vent inhibits the flow of fugitive gases to the vent and allows the escape of the fugitive gases to the vent if the pressure of the fugitive gases exceeds a predetermined value.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: February 14, 2012
    Assignee: REM Technology Inc.
    Inventor: Howard Leigh Malm
  • Patent number: 8091342
    Abstract: A method for controlling a powertrain includes selectively initiating an ammonia generation cycle, including injecting fuel into a combustion chamber of an engine before a primary combustion event to a calibrated air fuel ratio in a range lean of stoichiometry based upon generation of NOx within the combustion chamber, injecting fuel into the combustion chamber after the primary combustion event based upon an overall air fuel ratio in a range rich of stoichiometry and resulting generation of molecular hydrogen, and utilizing a catalyst device between the engine and a selective catalytic reduction device to produce ammonia.
    Type: Grant
    Filed: January 28, 2009
    Date of Patent: January 10, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Kevin L. Perry, David J. Cleary, Kushal Narayanaswamy, Paul M. Najt, Wei Li, James Donald Smith, Chang H Kim, Thompson M. Sloane
  • Patent number: 8065990
    Abstract: A compression ignition internal combustion engine system combusts DME as fuel using high fuel injection pressures (e.g., above 800 bar) and low oxygen concentrations (e.g., below 17%, through high levels of EGR), thereby resulting in simultaneously very low NOx and PM engine-out emissions.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: November 29, 2011
    Assignee: The United States of America as represented by the Administrator of the U.S. Environmental Protection Agency
    Inventors: Matthew J. Brusstar, Charles L. Gray, Jr., Fakhri J. Hamady