Gas Stream Passed Through Jet Nozzle Or Venturi Passage Patents (Class 128/204.25)
  • Patent number: 8656909
    Abstract: A nozzle, for use in a fluid dispensing device, having a body defining a fluid flow channel which is shaped to impart acceleration and angular momentum to fluid passing therethrough, an inlet port formed in the body and defining an inlet to the channel, and an outlet port formed in the body and defining an outlet from the channel, wherein the fluid flow channel includes a swirl chamber having a plurality of swirl chamber segments, the swirl chamber being located between the channel inlet and the channel outlet, wherein the body is comprised of a mating assembly of a plurality of like component parts, each of the component parts providing one of the swirl chamber segments; wherein the fluid flow channel includes a plurality of inlets to the swirl chamber for feeding fluid into the swirl chamber and wherein each of the component parts provides one of the swirl chamber inlets; wherein the swirl chamber inlets are positioned to feed fluid into respectively different swirl chamber segments and wherein the swirl ch
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: February 25, 2014
    Assignee: Glaxo Group Limited
    Inventors: James William Godfrey, Mark Graham Hedley
  • Patent number: 8607794
    Abstract: An nCPAP device for assisting patient breathing includes a generator body forming an inlet, a chamber, and first and second flow circuits. The chamber directs pressurized gas from the inlet to the flow circuits. The flow circuits each include a nozzle, a channel, and at least one port. The nozzle emits a jet stream into the channel in a direction of a patient side thereof. The port fluidly connects the channel to ambient, and promotes entrainment of ambient air with the jet stream. In some embodiments, the channel forms a ramp feature directing exhaled air toward the jet stream in an angular fashion. The generator body requires reduced driving pressures to achieve target CPAP levels and reduces total imposed WOB as compared to conventional designs.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: December 17, 2013
    Assignee: CareFusion 207, Inc.
    Inventors: Christopher M. Varga, Geoffrey C. Wise
  • Patent number: 8608827
    Abstract: An oxygen generator includes a stationary unit and a portable unit. The portable unit includes a compressor, molecular sieves, controllable valves and an enriched gas storage chamber. The stationary unit includes a compressor having a greater capacity than a capacity of the portable compressor.
    Type: Grant
    Filed: November 21, 2009
    Date of Patent: December 17, 2013
    Assignee: Koninklijke Philips N.V.
    Inventors: Bernhard Lewis Haberland, Joseph Thomas Dolenski, Jeremy Blair, Donald Kenneth Griffin, Marvin Norman Zeigler, Gerry Dean Richardson
  • Publication number: 20130312752
    Abstract: A system for reducing airway obstructions of a patient may include a ventilator, a control unit, a gas delivery circuit with a proximal end in fluid communication with the ventilator and a distal end in fluid communication with a nasal interface, and a nasal interface. The nasal interface may include at least one jet nozzle, and at least one spontaneous respiration sensor in communication with the control unit for detecting a respiration effort pattern and a need for supporting airway patency. The system may be open to ambient. The control unit may determine more than one gas output velocities. The more than one gas output velocities may be synchronized with different parts of a spontaneous breath effort cycle, and a gas output velocity may be determined by a need for supporting airway patency.
    Type: Application
    Filed: April 2, 2010
    Publication date: November 28, 2013
    Inventors: Gregory Kapust, Todd Allum, Anthony D. Wondka, Joseph Cipollone, Anthony Gerber, Darius Eghbal, Joey Aguirre, George A. Kassanis
  • Patent number: 8567400
    Abstract: An nCPAP device for assisting patient breathing includes a generator body forming an inlet, a chamber, and first and second flow circuits. The chamber directs pressurized gas from the inlet to the flow circuits. The flow circuits each include a first and second jets, a flow director and an exhaust conduit. The jets emit a jetstream into the flow director in a direction of a patient side thereof. In some embodiments, the flow director forms a first tapered wall section directing inhaled air toward the patient and a second tapered wall section directing exhaled air toward the exhaust conduit. The generator body requires reduced driving pressures to achieve target CPAP levels and reduces total imposed WOB as compared to conventional designs.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: October 29, 2013
    Assignee: CareFusion 207, Inc.
    Inventors: Khalid Mansour, Eric Porteous
  • Publication number: 20130263856
    Abstract: An intake module includes an outer tube body defining an intake chamber and having an intake end, and an inner tube body disposed in the outer tube body and having an intake hole communicating with the intake chamber. An intake lid covers the intake end and has an inlet hole for allowing the intake chamber to be in fluid communication with the outside so that a compressed gas is fed into the inlet hole. A needle tube defines a jet hole for spraying the compressed gas from the needle tube into the intake hole. When the compressed gas is delivered from the intake lid into the inner tube body, air is drawn into the intake hole to mix with the compressed gas according to Venturi effect.
    Type: Application
    Filed: January 7, 2013
    Publication date: October 10, 2013
    Applicant: GALEMED CORPORATION
    Inventors: Gary C.J. Lee, Ding-Yang Hsu
  • Publication number: 20130255683
    Abstract: A system for providing ventilation support to a patient may include a ventilator, a control unit, a gas delivery circuit with a proximal end in fluid communication with the ventilator and a distal end in fluid communication with a nasal interface, and a nasal interface. The nasal interface may include at least one jet nozzle at the distal end of the gas delivery circuit; and at least one spontaneous respiration sensor for detecting respiration in communication with the control unit. The system may be open to ambient. The control unit may receive signals from the at least one spontaneous respiration sensor and determine gas delivery requirements. The ventilator may deliver gas at a velocity to entrain ambient air and increase lung volume or lung pressure above spontaneously breathing levels to assist in work of breathing, and deliver ventilation gas in a cyclical delivery pattern synchronized with a spontaneous breathing pattern.
    Type: Application
    Filed: April 2, 2010
    Publication date: October 3, 2013
    Inventors: Gregory Kapust, Joseph Cipollone, Anthony D. Wondka, Anthony Gerber, Todd Allum, Darius Eghbal, Joey Aguirre, George A. Kassanis
  • Patent number: 8528557
    Abstract: A continuous positive airway pressure system features a housing forming an airway chamber, and an air pressure inlet and an air pressure outlet. The housing further defines internally a pair of tapered air jets, and a pair of tapered air receivers. The air receivers are located downstream of the air supply jets and disposed coaxially with respective ones of the air supply jets. Each receiver has a taper in an opposite direction to the direction of the taper of the air supply jets. A pair of nasal prongs is located downstream of the air receiving jets.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: September 10, 2013
    Assignee: CareFusion 207, Inc.
    Inventors: Steven Duquette, Steve Han
  • Publication number: 20130199520
    Abstract: A patient interface system for delivering a gas to a patient includes a patient interface device that includes at least one inhalation valve and at least one exhalation valve. The system also includes a venturi device that has at least one port for connection to a gas source. The venturi device has at least one primary air entrainment window and at least one secondary air entrainment window which is downstream of the at least one primary air entrainment window. The inhalation valve is disposed between: (1) the main body and (2) the primary and secondary air entrainment windows of the venturi device. At least one of the primary air entrainment window and secondary air entrainment window includes a means for closing the respective window, thereby changing a degree at which the respective window is open and changing a flow rate of the air flowing through the respective window.
    Type: Application
    Filed: January 22, 2013
    Publication date: August 8, 2013
    Applicant: Aeon Research and Technology, LLC
    Inventor: Aeon Research and Technology, LLC
  • Publication number: 20130199535
    Abstract: A venturi connector includes a housing having a mixing chamber defined therein and at least one window that is in fluid communication with the mixing chamber and is open to atmosphere to allow air to be entrained into the mixing chamber. The connector includes a nozzle actuator member includes a body having a plurality of discrete nozzles formed therein. The nozzles are defined by different sized venturi orifices through which gas flows, thereby allowing the concentration of the gas delivered to the patient to be varied. The nozzle actuator member is disposed within one window formed in the housing between the gas port and the mixing chamber such that the position of the nozzle actuator member within the housing can be adjusted so as to position one of the discrete nozzles into the gas flow path, thereby controlling the flow rate of the gas into the mixing chamber and ultimately the concentration of gas delivered to the patient.
    Type: Application
    Filed: January 23, 2013
    Publication date: August 8, 2013
    Applicant: Aeon Research and Technology, LLC
    Inventor: Aeon Research and Technology, LLC
  • Patent number: 8474455
    Abstract: A system for circuit compliance compensated volume assurance pressure control in a patient respiratory ventilation circuit, having a patient circuit volume estimator for estimating a patient circuit compliance, a patient circuit volume estimator to estimate a circuit volume VOLCKT—EST based on the patient circuit compliance, a patient volume observer, for estimating a patient volume VOLTID—EST based on a measure delivered net volume VOLNET and the patient circuit compliance, a volume assurance controller for generating a circuit compliance volume compensation factor VOLTID—CTL based on a preset assured volume VOLASS—SET and the estimated patient volume VOLTID—EST, and a decelerating inspiratory flow controller, operative to generate a decelerating inspiratory peak flow based on a preset inspiratory time TINSP and the volume compensation factor VOLTID—CTL.
    Type: Grant
    Filed: January 10, 2006
    Date of Patent: July 2, 2013
    Assignee: CareFusion 207, Inc.
    Inventors: Ihab S. Soliman, Steven Duquette
  • Patent number: 8453644
    Abstract: A system and a method for circuit compliance compensated pressure control in a patient respiratory ventilation system, having a pressure regulated feedback servo control loop, a pressure-regulated volume controller, and a patient volume observer. The patient volume observer is operative to estimate a patient volume, that is, the volume actually delivered to the patient by accounting for volume deviation or loss caused by patient circuit leakage and valve dynamics. Based on the difference between the estimated patient volume and a set tidal volume, the pressure-regulated volume controller is operative to generate and update a circuit compliance pressure compensation factor. The pressure regulated feedback servo control loop is operative to modulate the peak airway pressure based on the circuit compliance pressure compensation factor, so as to achieve the set tidal volume while maintaining a constant inspiratory time and a constant I:E ratio.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: June 4, 2013
    Assignee: CareFusion 207, Inc.
    Inventors: Ihab S. Soliman, Steven Duquette
  • Patent number: 8448635
    Abstract: A discharge head 10 (in illustrated embodiments) for discharging droplets from discharge ports can withstand high water pressure and is provided with a first orifice plate 3 having first discharge ports 3a and a second orifice plate 6 having second discharge ports. The first orifice plate 3 and the second orifice plate 6 are separated from each other in the liquid discharge direction of the discharge head 10 and disposed opposite to each other. The diameter of the discharge ports of the second orifice plate 6 is smaller than the diameter of the discharge ports 3a of the first orifice plate 3 so that very fine droplets 9 are discharged from the discharge head 10 as the liquid discharged from the discharge ports 3a of the first orifice plate 3 is split by the second discharge ports.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: May 28, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Yoshiyuki Fukumoto, Masaya Kobayashi, Masaru Sugita
  • Publication number: 20130092165
    Abstract: A nasal cannula ventilation system is described for treating lung disease or for exercise conditioning, incorporating a Venturi system. The ventilation cannula comprises unique positioning features to positively locate a gas delivery nozzle in an optimal location to optimize Venturi performance, patient comfort and fitment to the patient. The cannula is low profile, making it as realistic to wear and use as a standard oxygen cannula, and is simple rending the cost reasonable. The ventilation cannula uses a simple low cost ventilator as a gas delivery control system which is compatible with existing gas sources. The system is used (1) during stationary use to unrest the respiratory muscles to increase tolerance to activity after a treatment session, or (2) to enable activity within a distance from a stationary gas source, (3) during ambulatory use using a portable gas source to enable mobility, and (4) for enhanced fitness conditioning.
    Type: Application
    Filed: September 26, 2012
    Publication date: April 18, 2013
    Inventor: Anthony D. Wondka
  • Publication number: 20130081616
    Abstract: A tracheal coupling for interfacing between a patient and a gases source, the connector comprising a patient port (33) for connecting to the trachea interface/insert, an outlet port (36), and inlet port (31) between patient port and outlet port for receiving a flow of gases from the gases flow source, the connector restricting expiratory flow in use to produce PEEP of at least 1 cm H2O when flow to the inlet port is 50 litres per minute. A system or method for supplying gases to a patient using the connector is also disclosed. Flow restriction is implemented using an orifice that can be adjustable, jetting or turbulence induced by a directed flow nozzle (30). PEEP can also be varied by flow control of gas source.
    Type: Application
    Filed: March 29, 2011
    Publication date: April 4, 2013
    Applicant: FISHER & PAYKEL HEALTHCARE LIMITED
    Inventor: Stanislav Tatkov
  • Publication number: 20120304988
    Abstract: A respiratory treatment device comprising at least one chamber, a chamber inlet configured to receive exhaled air into the at least one chamber, at least one chamber outlet configured to permit exhaled air to exit the at least one chamber, and an exhalation flow path defined between the chamber inlet and the at least one chamber outlet. A restrictor member positioned in the exhalation flow path is moveable between a closed position, where a flow of exhaled air along the exhalation flow path is restricted, and an open position, where the flow of exhaled air along the exhalation flow path is less restricted. A vane in fluid communication with the exhalation flow path is operatively connected to the restrictor member and is configured to reciprocate between a first position and a second position in response to the flow of exhaled air along the exhalation flow path.
    Type: Application
    Filed: June 6, 2012
    Publication date: December 6, 2012
    Inventors: Adam Meyer, Dan Engelbreth
  • Patent number: 8276587
    Abstract: A hand-held, automated qualitative fit tester (QLFT) for establishing gas mask fit integrity. The automated QLFT may be configured to utilize a pressure source in combination with a cartridge and a nebulizer to generate aerosols having size distributions and concentrations that are substantially the same as OSHA-approved manual units. The QLFT may further include a cartridge that contains the aerosol solution used to test mask integrity. The cartridge may be configured to recapture solution that collects on the interior walls of the nebulizer. The automated QLFT may also be equipped with a microprocessor for executing sequences that are in substantive compliance with 29 CFR 1910.134 and for writing to a data storage device. The automated aspects of the invention can reduce or negate the need for operating personnel to repeatedly and manually actuate a squeeze ball and record results manually, as is required with present OSHA-approved hand-held aerosol generators.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: October 2, 2012
    Assignee: TSI, Incorporated
    Inventors: Hai Zhang, Will Zanto, Qian Shi, Greg Olson, Phillip Poeschl, Vincent Majkowski, Stuart J. Olstad
  • Publication number: 20120174927
    Abstract: A continuous positive airway pressure system features a housing forming an airway chamber, and an air pressure inlet and an air pressure outlet. The housing further defines internally a pair of tapered air jets, and a pair of tapered air receivers. The air receivers are located downstream of the air supply jets and disposed coaxially with respective ones of the air supply jets. Each receiver has a taper in an opposite direction to the direction of the taper of the air supply jets. A pair of nasal prongs is located downstream of the air receiving jets.
    Type: Application
    Filed: March 22, 2012
    Publication date: July 12, 2012
    Inventors: Steven Duquette, Steve Han
  • Patent number: 8181644
    Abstract: The present invention relates to a device for providing an aerosol flow, an air flow or both with at least a compressor for providing an air flow, a nebulization device for generating an aerosol flow and a mixing means for optionally mixing the aerosol flow with the air flow to provide a total flow, wherein the total flow is composed of the aerosol flow, the air flow or both. Further, the device comprises at least a first air channel between the compressor and the nebulization device, at least a second air channel between the compressor and the mixing means and an amplification means for increasing the air flow provided by the compressor.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: May 22, 2012
    Assignee: Activaero GmbH
    Inventors: Bernhard Mullinger, Manuel Frey, Tobias Kolb, Tobias Hoffmann
  • Publication number: 20120097164
    Abstract: A positive expiratory pressure device (PEP) has one or more of the following features, alone or in any combination: 1) a combination of oscillation PEP therapy and standard PEP therapy, 2) use of microwavable materials, 3) use of an oscillation rocker that produces a venturi effect, 4) use of a flexible tube to create the air pressure oscillation, 5) use of a rotating wheel to open and close the air channel and create air pressure oscillation, 6) use of a variable cross section air channel to generate different air flow resistance for providing multiple levels of constant pressure therapy, 7) use of a flexible air flow stopper plate with adjustable pivot point to generate different air flow resistance for providing multiple levels of constant pressure therapy, and 8) use of a selection switch that allows the device to switch between standard PEP therapy and oscillatory PEP therapy.
    Type: Application
    Filed: October 20, 2011
    Publication date: April 26, 2012
    Inventors: Deborah Anne Rozario, Soo Yao Jee, Radhakrishnan Nair Oravelil Kamalashi, Mike ChangGuo Yang
  • Publication number: 20120080034
    Abstract: An nCPAP device for assisting patient breathing includes a generator body forming an inlet, a chamber, and first and second flow circuits. The chamber directs pressurized gas from the inlet to the flow circuits. The flow circuits each include a first and second jets, a flow director and an exhaust conduit. The jets emit a jetstream into the flow director in a direction of a patient side thereof. In some embodiments, the flow director forms a first tapered wall section directing inhaled air toward the patient and a second tapered wall section directing exhaled air toward the exhaust conduit. The generator body requires reduced driving pressures to achieve target CPAP levels and reduces total imposed WOB as compared to conventional designs.
    Type: Application
    Filed: October 5, 2010
    Publication date: April 5, 2012
    Applicant: CareFusion 207, Inc.
    Inventors: Khalid Mansour, Eric Porteous
  • Patent number: 8146592
    Abstract: Fluid flow regulators and fluid conservers are disclosed. An exemplary fluid conserver may be operated in one of an intermittent mode of operation and a continuous mode of operation. Further, the exemplary conserver provides at least two pulses of fluid in response to a first trigger, such as the inhalation of a patient.
    Type: Grant
    Filed: February 28, 2005
    Date of Patent: April 3, 2012
    Assignee: Ameriflo, Inc.
    Inventors: James A. Voege, David A. Ferrer, Matthew G. Thie
  • Patent number: 8100125
    Abstract: Provided is a universal interface adapted for providing continuous positive airway pressure to a patient when the interface is used with a standard ventilator. The interface is configured to operate at a supply pressure no greater than about 120 centimeters of H2O in order to deliver pressure to the patient of up to about 15 cm of H2O at a flow rate of up to about 12 liters/minute. The universal interface may comprise an interface body having a space pair of breathing passageways intersecting a corresponding of supply passageways. Each one of the breathing passageways is comprised of a patient passageway and an exhalation passageway. Each one of the supply passageways includes a jet venturi having a taper portion. Each one of the exhalation passageways includes a taper portion which tapers outwardly along a direction from the patient passageway toward the exhalation passageway.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: January 24, 2012
    Assignee: CareFusion 207, Inc.
    Inventors: Steven Duquette, Alex Stenzler, Steve Han
  • Patent number: 8051854
    Abstract: A continuous high-frequency oscillation breathing device delivers therapy during both inhalation and exhalation in order to assist in clearing secretions from the lungs. A venturi patient interface circuit is combined with medicated aerosol to deliver continuous high-frequency oscillation therapy. Fixed open apertures in the patient interface circuit allow ingress and egress of flow, and are calibrated to allow exhalation and prevent stacking of successive breaths.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: November 8, 2011
    Assignee: Comedica Incorporated
    Inventor: Joseph Dee Faram
  • Patent number: 7918223
    Abstract: A system and a method for circuit compliance compensated pressure control in a patient respiratory ventilation system, having a pressure regulated feedback servo control loop, a pressure-regulated volume controller, and a patient volume observer. The patient volume observer is operative to estimate a patient volume, that is, the volume actually delivered to the patient by accounting for volume deviation or loss caused by patient circuit leakage and valve dynamics. Based on the difference between the estimated patient volume and a set tidal volume, the pressure-regulated volume controller is operative to generate and update a circuit compliance pressure compensation factor. The pressure regulated feedback servo control loop is operative to modulate the peak airway pressure based on the circuit compliance pressure compensation factor, so as to achieve the set tidal volume while maintaining a constant inspiratory time and a constant I:E ratio.
    Type: Grant
    Filed: November 9, 2005
    Date of Patent: April 5, 2011
    Assignee: CareFusion 207, Inc.
    Inventors: Ihab S. Soliman, Steven Duquette
  • Publication number: 20110067698
    Abstract: A hand held CPAP device for providing a continuous positive airway pressure where pressure is generated by a flow of gas from a demand valve by the interaction of an adjustable compression spring compressing the demand valve actuating diaphragm.
    Type: Application
    Filed: September 22, 2010
    Publication date: March 24, 2011
    Applicant: O-TWO MEDICAL TECHNOLOGIES INC.
    Inventors: Bing ZHENG, Ammar AL-DOJAILY, Kevin D. J. BOWDEN
  • Patent number: 7909033
    Abstract: The present invention relates to a method and apparatus for treating a variety of breathing disorders experienced by patients. The invention is particularly suited to the treatment of atelectasis, the partial or total collapse of the lung, although those skilled in the art will appreciate that it has applications in treating other disorders as well. Treating patients with breathing disorders traditionally has required the use of multiple types of apparatus in order to provide the multiple types of treatment used. The present invention provides for a treatment apparatus that is enabled to provide multiple types of treatment, depending on the needs of the patient.
    Type: Grant
    Filed: May 3, 2007
    Date of Patent: March 22, 2011
    Assignee: Comedica Incorporated
    Inventor: Joseph Dee Faram
  • Patent number: 7886739
    Abstract: A circuit compliance compensated volume control system in a patient respiratory ventilation system and method, including: a circuit compliance estimator, to provide a relationship between a circuit volume and a differential pressure between a circuit pressure and a positive end-expiratory pressure (PEEP) of the respiratory circuit, a circuit volume estimator, operative to provide an estimated circuit volume based on the relationship between the circuit volume and the differential pressure, a patient volume observer, operative to provide an estimated patient volume by subtracting the estimated circuit volume from a measured machine delivered net volume, and a volume delivery controller, operative to update the machine delivered net volume based on the estimated patient volume and a set tidal volume.
    Type: Grant
    Filed: October 11, 2005
    Date of Patent: February 15, 2011
    Assignee: Carefusion 207, Inc.
    Inventors: Ihab S. Soliman, Steven Duquette
  • Patent number: 7866315
    Abstract: An oxygen concentrator comprises a plurality of adsorbent columns, each having an inlet, an outlet and abed of adsorbent material. The oxygen concentrator also includes a vacuum pump for removing separated nitrogen rich gas from the column inlets, a control valve for controlling flow of fluids in and out of the columns, and a breakthrough sensor for signaling the position of a mass transfer zone (MTZ), the breakthrough sensor controlling operation of the control valve as a function of the breakthrough sensor signal. An electric control module (ECM) receives the signal from the breakthrough sensor, and adjusts the control valve based on the signal.
    Type: Grant
    Filed: February 9, 2005
    Date of Patent: January 11, 2011
    Assignee: VBox, Incorporated
    Inventors: Theodore W. Jagger, Nicholas P. Van Brunt, John A. Kivisto, Perry B. Lonnes
  • Patent number: 7856981
    Abstract: The present invention is related a nasal positive airway pressure device. The nasal device utilizes an engagement means located about nasal cannulae to engage and secure the cannulae within the nares of a patient. The engagement means is a nasal scaling flap. The flap in its natural bias is tapered, the wide-open end of which is shaped to conform to the facial contours of a patient's nose around the outside of the nose. Thus in a closed form, the flap provides a cup-like device that is fitted around the patient's nose and prevent the nasal device from falling from the patients nose. In the open form, which allows for placement and fitting of the nasal device, the flap is intended to be in a bent back position to aid insertion of the nasal cannulae into the patient's nares.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: December 28, 2010
    Assignee: Fisher & Paykel Healthcare Limited
    Inventors: Alastair Edwin McAuley, Nicholas Charles Alan Smith, Dominic Robert Doyle
  • Publication number: 20100282257
    Abstract: A fluid mixing apparatus is provided. The apparatus has a mixing volume, a primary inlet, secondary inlet, and an outlet are provided for the volume. The secondary inlet includes a valve which is adapted to be operated by a driver to pulse width modulate the valve between two flow states to achieve a given flow state through the secondary inlet.
    Type: Application
    Filed: January 24, 2007
    Publication date: November 11, 2010
    Applicant: DEVX TECH IP LIMITED [NZ/NZ]
    Inventors: Andrew Michael Chapman, Bruce William Potter
  • Publication number: 20100252041
    Abstract: A system for providing ventilation support to a patient may include a ventilator, a control unit, a gas delivery circuit with a proximal end in fluid communication with the ventilator and a distal end in fluid communication with a nasal interface, and a nasal interface. The nasal interface may include at least one jet nozzle at the distal end of the gas delivery circuit; and at least one spontaneous respiration sensor for detecting respiration in communication with the control unit. The system may be open to ambient. The control unit may receive signals from the at least one spontaneous respiration sensor and determine gas delivery requirements. The ventilator may deliver gas at a velocity to entrain ambient air and increase lung volume or lung pressure above spontaneously breathing levels to assist in work of breathing, and deliver ventilation gas in a cyclical delivery pattern synchronized with a spontaneous breathing pattern.
    Type: Application
    Filed: April 2, 2010
    Publication date: October 7, 2010
    Applicant: Breathe Technologies, Inc.
    Inventors: Gregory Kapust, Joseph Cipollone, Anthony D. Wondka, Anthony Gerber, Todd Allum, Darius Eghbal, Joey Aguirre
  • Publication number: 20100252044
    Abstract: A continuous positive airway pressure system features a housing forming an airway chamber, and an air pressure inlet and an air pressure outlet. The housing further defines internally a pair of tapered air jets, and a pair of tapered air receivers. The air receivers are located downstream of the air supply jets and disposed coaxially with respective ones of the air supply jets. Each receiver has a taper in an opposite direction to the direction of the taper of the air supply jets. A pair of nasal prongs is located downstream of the air receiving jets. Each receiver comprises a hemispherical section that is oriented at an angle off the center line of the supply.
    Type: Application
    Filed: July 30, 2009
    Publication date: October 7, 2010
    Applicant: Care Fusion
    Inventors: Steven Duquette, Steve Han
  • Publication number: 20100252042
    Abstract: A system for reducing airway obstructions of a patient may include a ventilator, a control unit, a gas delivery circuit with a proximal end in fluid communication with the ventilator and a distal end in fluid communication with a nasal interface, and a nasal interface. The nasal interface may include at least one jet nozzle, and at least one spontaneous respiration sensor in communication with the control unit for detecting a respiration effort pattern and a need for supporting airway patency. The system may be open to ambient. The control unit may determine more than one gas output velocities. The more than one gas output velocities may be synchronized with different parts of a spontaneous breath effort cycle, and a gas output velocity may be determined by a need for supporting airway patency.
    Type: Application
    Filed: April 2, 2010
    Publication date: October 7, 2010
    Applicant: Breathe Technologies, Inc.
    Inventors: Gregory Kapust, Todd Allum, Anthony D. Wondka, Joseph Cipollone, Anthony Gerber, Darius Eghbal, Joey Aguirre
  • Patent number: 7806120
    Abstract: Described herein are nasal respiratory devices, in particular, nasal respiratory devices configured to achieve positive end-expiratory pressure (PEEP) in a subject wearing the device. PEEP devices may have a threshold pressure for opening during expiration. In some variations, these devices have a threshold pressure for closing during expiration.
    Type: Grant
    Filed: June 7, 2007
    Date of Patent: October 5, 2010
    Assignee: Ventus Medical, Inc.
    Inventors: Bryan Loomas, Rajiv Doshi, Ryan Kendall Pierce, Robert A. Howard, Motohide Hatanaka
  • Publication number: 20100229863
    Abstract: The present invention relates to a catheter for ventilating a patient, with a ventilation channel for alternately delivering and removing air and/or oxygen to and from the patient's airways, the catheter having a maximum external diameter of at most 6 mm, mm, and the ventilation channel having an open end, and a connector end for connection to a gas flow reversing element. According to the invention, the catheter is provided with means or elements for measuring the pressure outside the ventilation channel near the open end. The catheter preferably has a pressure measurement channel, with an open measurement end near the open end of the ventilation channel, and a measurement connector piece for connecting a pressure display device. Of particular advantage is a catheter with an expansion body (cuff) that is fluidically connected to a supply channel through which the expansion body can be increased or reduced in size by means of a fluid.
    Type: Application
    Filed: September 16, 2009
    Publication date: September 16, 2010
    Applicant: DOLPHYS TECHNOLOGIES, B.V.
    Inventor: Dietmar Enk
  • Publication number: 20100145358
    Abstract: In a method or system for minimally-invasive therapy on a patient, a minimally-invasive therapy apparatus is provided. While performing the minimally-invasive therapy on the patient with a minimally-invasive therapy apparatus, the patient is ventilated with a jet ventilator to reduce a magnitude of the patient's breathing and increase a frequency of the patient's breathing.
    Type: Application
    Filed: December 8, 2008
    Publication date: June 10, 2010
    Inventor: Michael Maschke
  • Publication number: 20100125227
    Abstract: The method and system ventilates a patient's airway during the inspiratory phase and expiratory phase from a source of pressurized gas, typically from a compressor. The system and method supplies, to the patient airway during the inspiratory phase, a plurality of pulses of small volumes of gas from the gas source, and adds, in succession, pulses of small volumes of gas to provide successively greater volumes of gas successively increasing in pulsatile form the pressure of the gas in the patient's airway. This addition of successively greater volumes of gas serves to provide diffusive ventilation to the patient during the inspiratory phase, and, permits the patient to exhale during the expiratory phase.
    Type: Application
    Filed: April 10, 2009
    Publication date: May 20, 2010
    Inventor: Forrest M. Bird
  • Patent number: 7708011
    Abstract: A dry powder inhaler (1) is to be made available, with which a particle size and particle size distribution preferred for inhalation are to be achieved and by means of which as high a line particle fraction as possible is to be realized. This is achieved by means of a dry powder inhaler (1 ) that is characterized in that provided in the inhaler (1) is a nozzle (10) through which the aerosol (9) flows before leaving the inhaler (1).
    Type: Grant
    Filed: September 24, 2003
    Date of Patent: May 4, 2010
    Assignee: Boehringer Ingelheim Pharma GmbH and Co. KG
    Inventors: Dieter Hochrainer, Joerg Schiewe, Bernd Zierenberg, Stephen Dunne
  • Patent number: 7621266
    Abstract: The invention relates to a nozzle system for a delivery device for liquids, which comprises a nozzle and a device which fixes the nozzle in the delivery device. The device has a liquid reservoir from which a liquid is forced through a nozzle under pressure to deliver the liquid. The nozzle is secured by a holder on the delivery device. This holder may itself be secured by a second holder, e.g. in the form of a check nut, or the check nut itself may be the holder. According to the invention at least part of the outer surface of the holding device is micro- or nanostructured.
    Type: Grant
    Filed: January 14, 2004
    Date of Patent: November 24, 2009
    Assignee: Boehringer Ingelheim International GmbH
    Inventors: Heinrich Kladders, Herbert Wachtel
  • Patent number: 7584753
    Abstract: A demand and dilution mask regulator comprising an oxygen feed circuit and a dilution circuit for supplying air. The oxygen feed circuit and the dilution circuit are connected to a mixing chamber (35). In the dilution circuit, the inhaled breathe-in air flow rate is measured through a capillary duct (43) connected to a Venturi construction (41). A method of regulating the flow rate of additional oxygen uses flow rate data measured through the capillary duct (43) for controlling the oxygen flow rate to be supplied to the mixing chamber (35).
    Type: Grant
    Filed: July 15, 2004
    Date of Patent: September 8, 2009
    Assignee: Intertechnique
    Inventors: Séverine Aubonnet, Patrick Maire, Didier Lamourette, Benoît Estaca Sagot
  • Patent number: 7562659
    Abstract: A system and method are disclosed for the provision of assisted breathing by the delivery of a controlled pressurized airflow to the pulmonary airway of a user with breathing disorders. The system comprises a source of compressed respiratory gas (112), a user interface unit (115) including at least one Venturi device (120) and a thin flexible tubing (116) connecting between the source of high pressure gas (112) and the Venturi device. The system and method provide a regulated and controlled flow of air to the user (105) in accordance with the user needs. The invention further discloses a novel small light-weight user interface for replacing prior art breathing masks.
    Type: Grant
    Filed: July 22, 2003
    Date of Patent: July 21, 2009
    Inventor: Hasdi Matarasso
  • Publication number: 20090165799
    Abstract: A continuous positive airway pressure system features a housing forming an airway chamber, and an air pressure inlet and an air pressure outlet. The housing further defines internally a pair of tapered air jets, and a pair of tapered air receivers. The air receivers are located downstream of the air supply jets and disposed coaxially with respective ones of the air supply jets. Each receiver has a taper in an opposite direction to the direction of the taper of the air supply jets. A pair of nasal prongs is located downstream of the air receiving jets.
    Type: Application
    Filed: December 28, 2007
    Publication date: July 2, 2009
    Applicant: VIASYS MANUFACTURING, INC.
    Inventors: Steven Duquette, Steve Han
  • Publication number: 20090151726
    Abstract: A method and apparatus is described for supporting the respiration of a patient. The spontaneous respiration of a patient can be detected by sensors and during inhalation an additional amount of oxygen can be administered to the lungs via a jet gas current. If required, during exhalation a countercurrent can be administered to avoid collapse of the respiration paths. This therapy can be realized by an apparatus including a transtracheal catheter, an oxygen pump connected to an oxygen source, spontaneous respiration sensor(s) connected to a control unit for activating the oxygen pump and, if needed, a tracheal prosthesis. The tracheal prosthesis may include a connection for the catheter and the breath sensor(s). The tracheal prosthesis, if used, and the catheter can be dimensioned so the patient can freely breathe, cough, swallow and speak without restriction, and the system can be wearable to promote mobility.
    Type: Application
    Filed: November 14, 2008
    Publication date: June 18, 2009
    Applicant: Breathe Technologies, Inc.
    Inventor: Lutz Freitag
  • Publication number: 20090107503
    Abstract: A method and apparatus for delivering a medicine to a patient via the patient's respiratory system with control and efficiency. A nebulization catheter is positioned in the patient's respiratory system so that a distal end of the nebulization catheter is in the respiratory system and a proximal end is outside the body. In a first aspect, the nebulization catheter may be used in conjunction with an endotracheal tube and preferably is removable from the endotracheal tube. The nebulization catheter conveys medicine in liquid form to the distal end at which location the medicine is nebulized by a pressurized gas or other nebulizing mechanism. The nebulized medicine is conveyed to the patient's lungs by the patient's respiration which may be assisted by a ventilator. By producing the aerosol of the liquid medicine at a location inside the patient's respiratory system, the nebulizing catheter provides for increased efficiency and control of the dosage of medicine being delivered.
    Type: Application
    Filed: October 22, 2008
    Publication date: April 30, 2009
    Inventor: George Baran
  • Publication number: 20080245368
    Abstract: A respiratory therapy device including a housing, a flow diverter structure, a high frequency pressure port (HF port), and an entrainment port. The housing defines a primary passageway having a patient interface side. The flow diverter structure is in fluid communication with the primary passageway and is characterized by the absence of a venturi tube. The HF port is configured for fluid connection to a source of oscillatory gas flow, and is fluidly associated with the flow diverter structure. The entrainment port is openable to ambient air, and is fluidly associated with the flow diverter structure. With this construction, the device is configured such that flow characteristics of gas flow from an external source are altered upon interacting with the flow diverter structure to create a pressure drop for drawing in ambient air through the entrainment port in delivering a percussive pressure therapy to the patient side.
    Type: Application
    Filed: April 2, 2008
    Publication date: October 9, 2008
    Inventors: Thomas J. Dunsmore, Thomas C. Wilschke, Geoffrey C. Wise
  • Patent number: 7331344
    Abstract: A breathing device for assisting patients to breath by maintaining positive airway pressure during the breathing cycle comprises a breathing channel in fluid communication with an exhaust channel extending from a junction therebetween. A gas inlet is arranged so as to introduce gas into the breathing channel. A positive pressure may be maintained in the breathing channel wherein the axis of the gas inlet channel is laterally offset at the point at which the gas inlet channel introduces the gas into the breathing channel from the axis of the narrowest part of the breathing channel.
    Type: Grant
    Filed: February 21, 2003
    Date of Patent: February 19, 2008
    Assignees: Electro Medical Equipment Limited, Frazer-Nash Cobnsultancy Limited
    Inventors: Stephen Foster, Stuart Corner, Stephen Harrison
  • Patent number: 7328703
    Abstract: The pulmonary oxygen flow control system delivers oxygen from a source of pressure to a nasal cannula worn by the patient. Between the source and the nasal cannula is a pendant flow structure which includes an orifice followed by a gas dynamic valve. When the downstream pressure in the cannula is high, the gas dynamic valve diverts the oxygen flow through the orifice to a flexible reservoir. Upon inhalation, the pressure at the cannula falls so that the gas dynamic valve delivers the orifice flow to the cannula and also utilizes a Venturi effect to withdraw oxygen from the reservoir and deliver it to the cannula. The cannula has nasal tubes which have angular faces and which are positioned farther into the nares to deliver the oxygen more efficiently.
    Type: Grant
    Filed: August 25, 2004
    Date of Patent: February 12, 2008
    Inventor: Brian L. Tiep
  • Publication number: 20070227535
    Abstract: Various embodiments of a breath-activated nebulizer with flow-based fluidic control and related methods of using such a nebulizer are disclosed. The nebulizer may include a body comprising a reservoir for holding medication, a nozzle for emitting a jet of pressurized gas, and a fluid conduit in communication with the reservoir for delivery of the medication proximate the jet to produce an aerosol of medication. The nebulizer may also include a nebulizer outlet in communication with the body for delivery of the aerosol to a patient, an entrainment passage for providing entrainment flow from atmosphere during inhalation by the patient, and a control conduit in fluid communication with the fluid conduit for delivery of a control gas to the fluid conduit to prevent the delivery of the medication proximate the jet. In some exemplary embodiments, the control conduit may comprise a gas passage proximate the entrainment passage to allow the control gas to flow across the entrainment passage.
    Type: Application
    Filed: March 29, 2007
    Publication date: October 4, 2007
    Inventors: Steven M. Harrington, Douglas Gaylord, David A. Rivera, Neil A. Korneff, Rebecca A. Wilday, Chris Zollinger
  • Patent number: 7191780
    Abstract: A continuous high-frequency oscillation breathing device delivers therapy during both inhalation and exhalation in order to assist in clearings secretions the lungs. A fixed shrouded-venturi patient interface circuit is combined with medicated aerosol to deliver continuous high-frequency oscillation therapy. Fixed open apertures in the patient interface circuit allow ingress and egress of flow, and are calibrated to allow exhalation and prevent stacking of successive breaths.
    Type: Grant
    Filed: September 22, 2003
    Date of Patent: March 20, 2007
    Assignee: Comedica Incorporated
    Inventor: Joseph Dee Faram