Including Flowmeter Patents (Class 137/599.13)
  • Patent number: 10386259
    Abstract: A gas monitoring system for monitoring gas leaks from a gas turbine engine disposed within a gas turbine enclosure includes a controller including a processor and a memory communicatively coupled to the processor. The memory stores instructions which when executed by the processor perform operations including obtaining one or more operational parameters associated with a gas turbine system having the gas turbine engine from one or more sensors during operation of the gas turbine engine. The operations also include utilizing a gas leakage monitoring model to monitor for gas leaks within the gas turbine enclosure and to generate a gas index indicative of a severity of a gas leak within the gas turbine enclosure based on the one or more operational parameters. The operations further include outputting the index.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: August 20, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Hua Zhang, Manuel Cardenas, Jr., David Trayhan
  • Patent number: 10353408
    Abstract: A system for delivering pulses of a desired mass of gas to a tool, comprising: a mass flow controller including flow sensor, a control valve and a dedicated controller configured and arranged to receive a recipe of a sequence of steps for opening and closing the control valve so as to deliver as sequence of gas pulses as a function of the recipe. The mass flow controller is configured and arranged so as to operate in either one of at least two modes: as a traditional mass flow controller (MFC) mode or in a pulse gas delivery (PGD) mode. Further, the dedicated controller is configured and arranged to delivery pulses of gas in accordance with anyone of three different types of pulse gas delivery processes: a time based pulse delivery process, a mole based pulse delivery process and a profile based pulse delivery process.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: July 16, 2019
    Assignee: MKS Instruments, Inc.
    Inventors: Junhua Ding, Michael L'Bassi, Tseng-Chung Lee
  • Patent number: 10247594
    Abstract: A meter bypass adapter has a body having: a first port; a second port; a third port; and a fourth port. At least one valve element is held by the body and moveable between: a first position wherein a flowpath is open from the first port to the second port and a flowpath is open from the third port to the fourth port without a direct flowpath from the first port to the fourth port; and a second position wherein a flowpath extends from the first port to the fourth port bypassing the second port and the third port. A single rotary actuator is held by the body to rotate about an axis and, in turn, shift the least one valve element between the first position and the second position.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: April 2, 2019
    Assignee: Georg Fischer Central Plastics LLC
    Inventors: Michael D. Smith, Thomas G. Veeley
  • Patent number: 9909415
    Abstract: An apparatus for mixing fluids within a conduit and monitoring performance of the mixing is provided. In one embodiment, the apparatus includes a conduit and a fluid mixer coupled to the conduit for mixing fluid flowing through a bore of the conduit. The apparatus also includes multiple sensors for measuring a characteristic of the fluid at different locations in the bore of the conduit downstream from the fluid mixer. A controller of the apparatus can monitor performance of the fluid mixer in mixing the fluid flowing through the bore of the conduit based on the measured characteristic of the fluid at the different locations in the bore of the conduit downstream from the fluid mixer. Additional systems, devices, and methods are also disclosed.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: March 6, 2018
    Assignee: Cameron International Corporation
    Inventors: James M. Baker, Stuart F. Wright, Gary M. Potten
  • Patent number: 9010360
    Abstract: A flow valve assembly includes a valve operable between an open position and a closed position and a controller operatively coupled to the valve to operate the valve between the open position and the closed position. A mechanically or electrically operated assembly is provided to determine an amount of fluid flow through the valve when the valve is in the open position. A mechanically or electrically operated mechanism moves the valve from the open position to the closed position when the amount of fluid flow exceeds a predetermined value. A method of operating the valve is also provided.
    Type: Grant
    Filed: September 3, 2014
    Date of Patent: April 21, 2015
    Assignee: Drexel University
    Inventors: John Older, Bakhtier Farouk, La'Shell Jones, Jared Kern, Matthew Scholl
  • Patent number: 8959996
    Abstract: A water meter casing and manufacturing process thereof are provided. The water meter casing comprises a middle casing (1), a water inlet port (2) and a water outlet port (3), which are separate parts, wherein a water inlet (4) and a water outlet (5) where the water inlet and outlet ports (2, 3) are arranged are respectively provided at the two sides of the middle casing (1), and a support ring (6) is also provided in the inner cavity of the middle casing (1). The manufacturing process of the water meter casing relates to a method of forming the water meter casing by high pressure hydraulic bulging. The manufacturing process is simple and easy to carry out, and it presents the advantage of low cost.
    Type: Grant
    Filed: August 16, 2010
    Date of Patent: February 24, 2015
    Assignee: Jiangxi Sanchuan Water Meter Co., Ltd
    Inventors: Caihua Song, Ming Luo, Guomin Xu
  • Patent number: 8127792
    Abstract: A pipeline flow meter orifice fitting includes a first body, a flow bore through the first body, a chamber in the first body adjacent to the flow bore, an orifice plate supported in alignment with the flow bore by an orifice plate carrier, wherein the orifice plate carrier is exposed to the chamber and divides the flow bore into a first region to one side of the orifice plate and a second region to the other side of the orifice plate, a second body coupled to said first body, a first flow path fluidicly coupling the first region and the chamber through the second body, and a second flow path fluidicly coupling the second region and the chamber through the second body. In some embodiments, a three way valve is mounted on the first body, the three way valve selectably actuatable to open a first flow path between the first region and the chamber or a second flow path between the second region and the chamber.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: March 6, 2012
    Assignee: Daniel Measurement and Control, Inc.
    Inventor: Thomas Henry Loga
  • Publication number: 20080141756
    Abstract: A device for measurement of entrained and dissolved gas has a first module arranged in relation to a process line for providing a first signal containing information about a sensed entrained air/gas in a fluid or process mixture flowing in the process line at a process line pressure. The device features a combination of a bleed line, a second module and a third module. The bleed line is coupled to the process line for bleeding a portion of the fluid or process mixture from the process line at a bleed line pressure that is lower than the process pressure. The second module is arranged in relation to the bleed line, for providing a second signal containing information about a sensed bleed line entrained air/gas in the fluid or process mixture flowing in the bleed line.
    Type: Application
    Filed: February 29, 2008
    Publication date: June 19, 2008
    Applicant: CIDRA CORPORATION
    Inventors: Daniel L. Gysling, Douglas H. Loose
  • Patent number: 7328721
    Abstract: A flow rate controller for controlling the flow of a medium, includes an incoming channel, a measuring chamber, a running flow channel connecting the incoming channel and the measuring chamber, a control valve acting in the running flow channel, and an outflow channel for the controlled flow. A necessary flow channel leads from the incoming channel to the measuring chamber. There is a flow adjusting in the necessary flow channel. A service flow channel leads from the necessary flow channel to the outflow channel. In addition, the flow rate includes comprises control elements for leading the flow from the necessary flow channel selectively into the measuring chamber and service flow channel, respectively.
    Type: Grant
    Filed: July 22, 2005
    Date of Patent: February 12, 2008
    Assignee: Instrumenttitehdas Kytola Oy
    Inventor: Olli Kytölä
  • Patent number: 6968856
    Abstract: A mechanical automatic fluid consumption limiting apparatus for limiting flow through a primary flow line includes an actuating line, a control line, a rotary meter, a control assembly, an actuating valve, a diaphragm valve on the primary line, an eductor and an engagement controller. The actuating valve, initially spring-biased to a non-actuating position, is rotated to an actuating position effecting closure of the diaphragm valve responsive to a predetermined quantity of flow through the rotary meter and mechanical response of the control assembly. An eductor diaphragm is positioned within the eductor responsive to flow through the primary line and pressure from the actuating line. The engagement controller is connected to the eductor diaphragm. The control line by-passes the diaphragm valve to provide pressure within the eductor to re-position the eductor diaphragm after closure of the diaphragm valve.
    Type: Grant
    Filed: July 7, 2004
    Date of Patent: November 29, 2005
    Inventor: Michael Goza
  • Patent number: 6932098
    Abstract: A mass flow controller includes a thermal mass flow sensor in combination with a pressure sensor to provide a mass flow controller that is relatively insensitive to fluctuations in input pressure. The pressure sensor and thermal sensor respectively provide signals to an electronic controller indicating the measured inlet flow rate and the pressure within the dead volume. The electronic controller employs the measured pressure to compensate the measured inlet flow rate and to thereby produce a compensated measure of the outlet flow rate, which may be used to operate a mass flow controller control valve.
    Type: Grant
    Filed: March 23, 2004
    Date of Patent: August 23, 2005
    Assignee: MKS Instruments, Inc.
    Inventors: Ali Shajii, Nicholas Kottenstette, Jesse Ambrosina, Donald K. Smith, William R. Clark
  • Patent number: 6871666
    Abstract: Methods and apparatus for a bi-directional dual chamber orifice fitting comprising a body with a chamber in fluid communication with a flow bore. The fitting also comprises an orifice supported by an orifice plate carrier that is selectably disposable in the bore. In the preferred embodiment, the lower chamber includes two passageways connecting the chamber to the flow bore. One passageway is located on either side of the orifice plate. Each passageway may also be equipped with a check valve to permit flow in only one direction through the passageway. In operation, the passageway on the upstream side of the orifice would allow fluid to flow into the lower chamber while the passageway on the downstream side would prevent flow back into the flow bore.
    Type: Grant
    Filed: May 19, 2004
    Date of Patent: March 29, 2005
    Assignee: Daniel Industries, Inc.
    Inventors: Thomas Henry Loga, Archie Dodd Begg, William R. Freund, Jr.
  • Patent number: 6832625
    Abstract: An electrically operable valve assembly having an integral pressure regulator provides ease of installation and compact packaging for a water supply control system. The valve assembly is particularly useful for systems that control household water supplies to prevent flooding, but is also useful in other applications such as agricultural and industrial systems where water pressure determined water flow volume must be predicted accurately. The valve may also incorporate a flow meter having a positive flow characteristic permitting determination of very low flow rate flow and the valve may incorporate a manual control. All of the controls and features are integrable within a compact package that occupies essentially the same volume and piping space as a conventional electrically operable valve.
    Type: Grant
    Filed: April 11, 2002
    Date of Patent: December 21, 2004
    Inventor: Michael Brent Ford
  • Publication number: 20040216786
    Abstract: A method for transporting an easily polymerizable liquid by a pipeline having branches, wherein among pipelines branched at a branch point, one pipeline which may not be used over a long period of time, is provided with a valve to close the pipeline, within 500 mm from the branch point.
    Type: Application
    Filed: June 1, 2004
    Publication date: November 4, 2004
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Shuhei Yada, Kenji Takasaki, Yasushi Ogawa, Yoshiro Suzuki, Hirochika Hosaka
  • Patent number: 6755210
    Abstract: The present invention provides a high-performance mass flow controller which is compact and lightweight, which has a flow path having a simple structure and which does not have dead space in which a fluid is likely to stagnate and cause the problem of contamination. A cylindrical valve conduit having a hollow structure, a yoke and a sensor conduit are connected in tandem. A fluid inlet portion is connected to an end of the valve conduit and a fluid outlet portion is connected to an end of the sensor conduit. A solenoid valve is provided on a side of the fluid inlet portion and a thermal mass flowmeter is provided on a side of the fluid outlet portion. In the valve conduit, a cylindrical plunger providing a movable portion of the solenoid valve and a valve portion of which a degree of opening is adjusted by moving the plunger are provided on a side of the fluid inlet portion. A bypass for generating a laminar flow is disposed in the sensor conduit so as to effect one-way flow of a fluid.
    Type: Grant
    Filed: December 27, 2001
    Date of Patent: June 29, 2004
    Assignee: MKS Japan, Inc.
    Inventor: Isao Suzuki
  • Patent number: 6712084
    Abstract: A mass flow controller includes a thermal mass flow sensor in combination with a pressure sensor to provide a mass flow controller that is relatively insensitive to fluctuations in input pressure. The pressure sensor and thermal sensor respectively provide signals to an electronic controller indicating the measured inlet flow rate and the pressure within the dead volume. The electronic controller employs the measured pressure to compensate the measured inlet flow rate and to thereby produce a compensated measure of the outlet flow rate, which may be used to operate a mass flow controller control valve.
    Type: Grant
    Filed: June 24, 2002
    Date of Patent: March 30, 2004
    Assignee: MKS Instruments, Inc.
    Inventors: Ali Shajii, Nicholas Kottenstette, Jesse Ambrosina
  • Patent number: 6561218
    Abstract: A fluid mass flow control apparatus, particularly useful for controlling low flow rates of fluids used in semiconductor manufacturing processes, comprises a first elongated flow tube connected to an inlet fitting and to a capsule like valve housing and a second elongated tube connected to the inlet fitting and the valve housing and including a flow sensor. The valve housing is connected to a magnetostrictive actuator including an elongated actuator member disposed in a conduit connected to the valve housing and serving as part of the fluid flow path through the apparatus. An electromagnetic coil is disposed about the conduit and the actuator and is responsive to energization to effect controlled elongation of the actuator to control the position of a valve closure member disposed in the valve housing. Adjustments to full-scale flow ranges of the apparatus may be obtained by inserting a tube or wire in the flow sensor tube to act as a flow restrictor.
    Type: Grant
    Filed: July 24, 2001
    Date of Patent: May 13, 2003
    Assignee: Fugasity Corporation
    Inventor: Daniel T. Mudd
  • Patent number: 6443174
    Abstract: A fluid mass flow control apparatus, particularly adapted for use in controlling fluid flow to semiconductor fabrication processes, comprises a tubular body part having inlet and outlet fittings and a bore extending therethrough and supporting a valve seat in the bore. A closure member is connected to an arm which extends laterally through a tubular spigot portion of the body part. The body part has a reduced thickness wall at the spigot portion to allow elastic deflection of the wall and movement of the arm to control the position of the closure member. An elongated tube or rod actuator on which a resistance heating coil is supported is operably connected to a control system for heating the actuator to move the arm to control flow of fluid through the apparatus. A flow restrictor is mounted upstream of the valve seat and a mass flow sensor is in communication with the passage to provide a mass flow rate signal to the control system.
    Type: Grant
    Filed: July 6, 2001
    Date of Patent: September 3, 2002
    Inventor: Daniel T. Mudd
  • Patent number: 6363957
    Abstract: A system and method are provided for supplying a predetermined amount of fluid, such as fuel and more specifically natural gas, to a target delivery site along at least two pipeline segments wherein a predetermined number of flow meter assemblies corresponding to a total of the at least two pipeline segments are provided to meter flow to the site. The flow meter assemblies are disposed in parallel for flowing a respective portion of the total flow to the target delivery site.
    Type: Grant
    Filed: November 20, 2000
    Date of Patent: April 2, 2002
    Assignee: PG&E National Energy Group, Inc.
    Inventor: David F. Dahlem
  • Patent number: 6293298
    Abstract: A water softener valve for controlling water flow to and from a water softener is disclosed that includes a cylindrical shaft extending from said inner surface of a piston chamber that fits into a pressure relief port when the piston is in the service position. The shaft clears the pressure relief port of any debris and closes the pressure relief port during the service cycle. The water softener valve also has a flow meter with at least two helically expanding vanes. A magnet on of the vanes trips a sensor as the turbine rotates, thereby providing means for calculating the flow of water through the valve. The valve also has a flow control button located at an inlet of the valve rather than at the drain, preventing the obstruction of the water flow by regeneration sediment of the tank at the drain. The valve also contains an internal piston port for permitting the free flow of water through the valve during a change in softener cycles.
    Type: Grant
    Filed: February 26, 1999
    Date of Patent: September 25, 2001
    Assignee: iNetWater LLC
    Inventors: Earl Brane, Boyd Cornell
  • Patent number: 6247495
    Abstract: A flow proportioning assembly for dividing a portion of a fluid flow such as gas for presentation to a sensor includes a holder member having a central opening and forming an exterior peripheral passageway when inserted within a conduit of a flow meter housing. A resistor member can be adjustably mounted in the central opening downstream of a holder member aperture to encourage a laminar flow pattern and a large entrance port and a large exit port can communicate with a passageway that is operatively connected with a sensor. The exit port is downstream of the resistor member. Flexible fastener members can engage the resistor member and the holder member for ease of mounting. The resistor member can also comprise a helical arrangement of small fluid passageways to encourage laminar flow.
    Type: Grant
    Filed: December 1, 1999
    Date of Patent: June 19, 2001
    Assignee: STEC, Inc.
    Inventors: Keiichiro Yamamoto, Yoshihiro Taniguchi