Treatment In A Magnetic Field Patents (Class 148/103)
  • Patent number: 8328954
    Abstract: Crystal fractured surfaces of raw meal powder having more equal crystal orientation relationship in the magnetic field are arranged to be assembled together so that a method of manufacturing a permanent magnet which has an extremely high degree of orientation can be provided. In this invention, raw meal powder (P) is filled into a cavity, the raw meal powder (P) is oriented in the magnetic field while being pressed or urged by pressing means that has a smaller area than the cross-sectional area of the cavity. Semi-finished product thus oriented is compression-molded into a predetermined shape in the magnetic field.
    Type: Grant
    Filed: December 25, 2008
    Date of Patent: December 11, 2012
    Assignee: Ulvac, Inc.
    Inventors: Hiroshi Nagata, Yoshinori Shingaki
  • Patent number: 8303732
    Abstract: A rare earth magnet having a composition represented by RTB wherein R denotes a rare earth element, T a transition metal and B boron, the magnet being composed of magnet powder constituted by crystalline particles. The particles of the magnetic powder have a ratio of a short diameter being 10 ?m or more to a long diameter is 0.5 or less. An element Rm having a magnetic anisotropy higher than that of the rare earth element is contained in the surface and inside of the magnet constituted by the magnet powder in an approximately constant concentration. An oxy-fluoride and carbon are present at boundaries of the particles of the magnet powder.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: November 6, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Hiroyuki Suzuki, Takao Imagawa, Yuichi Satsu, Matahiro Komuro
  • Patent number: 8287661
    Abstract: A method for producing a sintered R-T-B based magnet includes the steps of: providing R-T-B based alloy powders A and B so that the R-T-B based alloy powder B has a particle size D50 that is smaller by at least 1.0 ?m than that of the R-T-B based alloy powder A and that there is a difference ?RH of at least 4 mass % between the higher content of a heavy rare-earth element RH in the R-T-B based alloy powder B and the lower content of the heavy rare-earth element RH in the R-T-B based alloy powder A; mixing these two R-T-B based alloy powders A and B together; compacting the mixed R-T-B based alloy powder to obtain a compact with a predetermined shape; and sintering the compact.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: October 16, 2012
    Assignee: Hitachi Metals, Ltd.
    Inventors: Rintaro Ishii, Futoshi Kuniyoshi
  • Patent number: 8268093
    Abstract: An R—Fe—B based porous magnet according to the present invention has an aggregate structure of Nd2Fe14B type crystalline phases with an average grain size of 0.1 ?m to 1 ?m. At least a portion of the magnet is porous and has micropores with a major axis of 1 ?m to 20 ?m.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: September 18, 2012
    Assignee: Hitachi Metals, Ltd.
    Inventors: Takeshi Nishiuchi, Noriyuki Nozawa, Satoshi Hirosawa, Tomohito Maki, Katsunori Bekki
  • Patent number: 8252123
    Abstract: A rare earth permanent magnet is prepared by disposing a powdered metal alloy containing at least 70 vol % of an intermetallic compound phase on a sintered body of R—Fe—B system, and heating the sintered body having the powder disposed on its surface below the sintering temperature of the sintered body in vacuum or in an inert gas for diffusion treatment. The advantages include efficient productivity, excellent magnetic performance, a minimal or zero amount of Tb or Dy used, an increased coercive force, and a minimized decline of remanence.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: August 28, 2012
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Hiroaki Nagata, Tadao Nomura, Takehisa Minowa
  • Patent number: 8211246
    Abstract: In one embodiment, a permanent magnet has a composition represented by (Sm1-xRx)(FepMqCurCo1-p-q-r)z, where R is at least one element selected from Nd and Pr, M is at least one element selected from Ti, Zr and Hf, and 0.22?p?0.45, 0.005?q?0.05, 0.01 ?r?0.1, 0.05?x<0.5, and 7?z?9. The permanent magnet includes a Th2Zn17 crystal phase as a main phase, and a ratio of diffraction peak intensity I(113) from a (113) plane of the Th2Zn17 crystal phase in powder X-ray diffraction to diffraction peak intensity I(300) from a (300) plane in powder X-ray diffraction is in a range of 0.9?I(113)/I(300)?1.7.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: July 3, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masaya Hagiwara, Shinya Sakurada, Yosuke Horiuchi, Keiko Okamoto, Tsuyoshi Kobayashi, Shiori Kaji
  • Patent number: 8182618
    Abstract: A sintered rare-earth magnet includes an Nd2Fe14B type crystalline phase as its main phase and Al as an additive. The magnet includes at least one light rare-earth element LR selected from the group consisting of yttrium and the rare-earth elements other than Dy, Ho and Tb, and at least one heavy rare-earth element HR selected from the group consisting of Dy, Ho and Tb. The mole fractions ?1, ?2 and ? of the light and heavy rare-earth elements LR and HR and Al satisfy the inequalities 25??1+?2?40 mass %, 0<?2?40 mass %, ?>0.20 mass %, and 0.04??/?2?0.12.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: May 22, 2012
    Assignee: Hitachi Metals, Ltd.
    Inventors: Noriyuki Nozawa, Tomoori Odaka, Yutaka Matsuura
  • Patent number: 8157927
    Abstract: It is an object of the present invention to obtain a highly coercive R-T-B system sintered magnet by making the crystal microstructure of a raw material alloy prepared by strip casting more uniform, thereby making the crushed powder obtained from such raw material alloy more fine and making the size distribution more narrow. The present invention provides a raw material alloy for an R-T-B system sintered magnet containing grains of an R2T14B compound, wherein a P and/or S content is between 100 and 950 ppm. This raw material alloy preferably has a composition comprising 25 to 35% by weight of R, 0.5 to 4% by weight of B, 0.02 to 0.6% of one or both of Al and Cu, 5% by weight or less of Co, and the balance of Fe.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: April 17, 2012
    Assignee: TDK Corporation
    Inventors: Yasushi Enokido, Chikara Ishizaka, Gouichi Nishizawa
  • Publication number: 20120062351
    Abstract: A ferromagnetic amorphous alloy ribbon includes an alloy having a composition represented by FeaSibBcCd where 80.5?a?83 at. %, 0.5?b?6 at. %, 12?c?16.5 at. %, 0.01?d?1 at. % with a+b+c+d=100 and incidental impurities, the ribbon being cast from a molten state of the alloy with a molten alloy surface tension of greater than or equal to 1.1 N/m on a chill body surface; the ribbon having a ribbon length, a ribbon thickness, and a ribbon surface facing the chill body surface; the ribbon having ribbon surface protrusions being formed on the ribbon surface facing the chill body surface; the ribbon surface protrusions being measured in terms of a protrusion height and a number of protrusions; the protrusion height exceeding 3 ?m and less than four times the ribbon thickness, and the number of protrusions being less than 10 within 1.5 m of the cast ribbon length; and the alloy ribbon in its annealed straight strip form having a saturation magnetic induction exceeding 1.
    Type: Application
    Filed: September 9, 2010
    Publication date: March 15, 2012
    Applicants: HITACHI METALS, LTD., METGLAS, INC.
    Inventors: Eric A. Theisen, James Perrozi, Yuichi Ogawa, Yuji Matsumoto, Daichi Azuma, Ryusuke Hasegawa
  • Patent number: 8133329
    Abstract: One embodiment includes compacting a powder material using at least a first magnetic field to form a compact and selectively sintering a first portion of the compact and leaving a second portion of the compact unsintered to form a component.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: March 13, 2012
    Assignee: GM Global Technology Operations LLC
    Inventor: Shekhar G. Wakade
  • Patent number: 8108987
    Abstract: A method of manufacturing a magnetic resonance imaging (MRI) device is provided including providing at least one magnet positioned between a keeper device and a yoke, the keeper device being positioned at a pole region of the at least one magnet, positioning at least one pole device at the pole region of the at least one magnet, and removing the keeper device from the pole region to allow the at least one pole device to be positioned at the pole region of the at least one magnet.
    Type: Grant
    Filed: November 3, 2004
    Date of Patent: February 7, 2012
    Assignee: General Electric Company
    Inventors: Bulent Aksel, Judson Sloan Marte, Juliana Chiang Shei, Mark Gilbert Benz, Yuji Inoue
  • Patent number: 8105443
    Abstract: A method for the production of pressed permanent magnets comprises the following steps: A mixture of at least one magnetic powder and a thermosetting binder is provided and pressed to produce a moulded body. In order to obtain a permanent and particularly reliable protection against oxidation and corrosion, the moulded body is impregnated with an acid and solvent mixture in an impregnating bath before the cure of the thermosetting binder, whereby the entire surface of the permanent magnet is coated with a reaction layer [FIG. 1].
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: January 31, 2012
    Assignee: Vacuumschmelze GmbH & Co.
    Inventors: Georg Werner Reppel, Volker Zellmann
  • Publication number: 20120006449
    Abstract: The present invention provides a method for producing metallic iron, which is operable at low temperature. The present invention relates to a method for producing a metallic iron, which comprises heating and reducing a raw material mixture containing a carbonaceous reducing agent and an iron oxide-containing material to produce the metallic iron, wherein the carbonaceous reducing agent has a volatile content of 20 to 60 mass %, a gas derived from the carbonaceous reducing agent is a CO—CO2—H2 gas, and the method comprises forming solid Fe3C by heating the raw material mixture in an atmosphere containing the CO—CO2—H2 gas, melting the Fe3C, and carburizing a reduced iron through the molten Fe3C.
    Type: Application
    Filed: April 6, 2010
    Publication date: January 12, 2012
    Applicants: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.), Mitsutaka HINO
    Inventors: Mitsutaka Hino, Isao Kobayashi, Akira Uragami, Takuya Negami
  • Patent number: 8092619
    Abstract: An R-T-Cu—Mn—B based sintered magnet includes: 12.0 at % to 15.0 at % of R, which is at least one of the rare-earth elements that include Y and of which at least 50 at % is Pr and/or Nd; 5.5 at % to 6.5 at % of B; 0.08 at % to 0.35 at % of Cu; 0.04 at % to less than 0.2 at % of Mn; at most 2 at % (including 0 at %) of M, which is one, two, or more elements that are selected from the group consisting of Al, Ti, V, Cr, Ni, Zn, Ga, Zr, Nb, Mo, Ag, In, Sn, Hf, Ta, W, Au, Pb and Bi; and T as the balance, which is either Fe alone or Fe and Co and of which at most 20 at % is Co if T includes both Fe and Co.
    Type: Grant
    Filed: June 11, 2009
    Date of Patent: January 10, 2012
    Assignee: Hitachi Metals, Ltd.
    Inventors: Futoshi Kuniyoshi, Rintaro Ishii, Hiroyuki Tomizawa
  • Patent number: 8044547
    Abstract: In a radial-direction gap type magnet motor, when an energy density increases, a direction change M?/?p of a static magnetic field with respect to a mechanic angle between different poles increases in an exponential manner and thus to decrease a cogging torque of the motor is not compatible to increase a torque density. In order to solve the problem, assuming that ?t denotes a mechanic angle of a stator iron core teeth, ?p denotes a mechanical angle of a magnetic pole, and M? denotes an angle of a static magnetic field with respect to a circumferential tangential line of a radial magnetic pole center, a radial-direction type magnet motor in which ?t<?p, M? in a magnetic pole center region is 75 to 90°, and M?/?p?7 is satisfied in the magnetic pole end region of ?p×0.1°, and further, a static magnetic field generating source is configured as a magnetic anisotropic magnetic pole having an energy density (BH) max?150 kJ/m3 is provided.
    Type: Grant
    Filed: November 15, 2007
    Date of Patent: October 25, 2011
    Assignee: Panasonic Corporation
    Inventors: Fumitoshi Yamashita, Hiroshi Murakami, Yukihiro Okada, Kiyomi Kawamura
  • Patent number: 8025744
    Abstract: A rare earth permanent magnet is prepared by disposing a powdered metal alloy containing at least 70 vol % of an intermetallic compound phase on a sintered body of R—Fe—B system, and heating the sintered body having the powder disposed on its surface below the sintering temperature of the sintered body in vacuum or in an inert gas for diffusion treatment. The advantages include efficient productivity, excellent magnetic performance, a minimal or zero amount of Tb or Dy used, an increased coercive force, and a minimized decline of remanence.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: September 27, 2011
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Hiroaki Nagata, Tadao Nomura, Takehisa Minowa
  • Patent number: 8012269
    Abstract: A rare earth permanent magnet material is based on an R—Fe—Co—B—Al—Cu system wherein R is at least one element selected from Nd, Pr, Dy, Tb, and Ho, 15 to 33% by weight of Nd being contained. At least two compounds selected from M-B, M-B—Cu and M-C compounds (wherein M is Ti, Zr or Hf) and an R oxide have precipitated within the alloy structure as grains having an average grain size of up to 5 ?m which are uniformly distributed in the alloy structure at intervals of up to 50 ?m.
    Type: Grant
    Filed: December 23, 2005
    Date of Patent: September 6, 2011
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Kenji Yamamoto, Koichi Hirota, Takehisa Minowa
  • Patent number: 7988795
    Abstract: An R-T-B—C rare earth sintered magnet (R?Ce, Pr, Nd, Tb, or Dy; T=Fe) is obtained by mixing an R-T-B—C magnet matrix alloy with an R fluoride and an R-rich R-T-B—C sintering aid alloy, followed by pulverization, compaction and sintering. The sintered structure consists of an R2T14B type crystal primary phase and a grain boundary phase. The grain boundary phase consists essentially of 40-98 vol % of R—O1-x—F1+2x and/or R—Fy, 1-50 vol % of R—O, R—O—C or R—C compound phase, 0.05-10 vol % of R-T phase, 0.05-20 vol % of B-rich phase or M-B2 phase (M=Ti, V, Cr, Zr, Nb, Mo, Hf, Ta or W), and the balance of an R-rich phase.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: August 2, 2011
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Koichi Hirota, Takehisa Minowa
  • Patent number: 7985303
    Abstract: A rare earth permanent magnet is prepared by disposing a powdered metal alloy containing at least 70 vol % of an intermetallic compound phase on a sintered body of R—Fe—B system, and heating the sintered body having the powder disposed on its surface below the sintering temperature of the sintered body in vacuum or in an inert gas for diffusion treatment. The advantages include efficient productivity, excellent magnetic performance, a minimal or zero amount of Tb or Dy used, an increased coercive force, and a minimized decline of remanence.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: July 26, 2011
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Hiroaki Nagata, Tadao Nomura, Takehisa Minowa
  • Patent number: 7955442
    Abstract: The present invention provides a method for producing a sintered magnet, which can have a sufficient sintered density even when the magnet has a low-R composition. The method is for producing a sintered magnet comprising R (R: one or more rare-earth elements), T (T: one or more transition metal elements essentially comprising Fe, or Fe and Co) and B (boron) as the main components, wherein a starting alloy prepared by strip casting is pulverized to a given particle size to form a fine powder, where the starting alloy comprises discolored deposit 1 on the surface and the area ratio of the discolored deposit 1 is 1.5% or less, the resulting fine powder is compacted in a magnetic field to prepare a compact, and the compact is sintered.
    Type: Grant
    Filed: November 16, 2004
    Date of Patent: June 7, 2011
    Assignee: TDK Corporation
    Inventors: Tetsuya Hidaka, Chikara Ishizaka
  • Patent number: 7948135
    Abstract: A radial anisotropic sintered magnet formed into a cylindrical shape includes a portion oriented in directions tilted at an angle of 30° or more from radial directions, the portion being contained in the magnet at a volume ratio in a range of 2% or more and 50% or less, and a portion oriented in radial directions or in directions tilted at an angle less than 30° from radial directions, the portion being the rest of the total volume of the magnet. The radial anisotropic sintered magnet has excellent magnet characteristics without occurrence of cracks in the steps of sintering and cooling for aging, even if the magnet has a shape of a small ratio between an inner diameter and an outer diameter.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: May 24, 2011
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Koji Sato, Mitsuo Kawabata, Takehisa Minowa
  • Patent number: 7942981
    Abstract: A seamless, rotationally symmetrical hollow blank formed by a non-cutting operation from a deformable permanently magnetic alloy is provided, said alloy consisting essentially of 5.0 to 20.0 percent by weight cobalt, 20.0 to 35.0 percent by weight chromium, for the remainder iron and impurities caused by melting and/or by chance. The seamless hollow body is suitable in particular for use in hysteresis clutches, hysteresis brakes, and position measuring devices. Furthermore, non-cutting shaping processes for producing the seamless rotationally symmetrical hollow body are provided, with roller spinning being preferred.
    Type: Grant
    Filed: September 19, 2007
    Date of Patent: May 17, 2011
    Assignee: Vacuumschmelze GmbH & Co. KG
    Inventors: Ottmar Roth, Hartwin Weber, Lutz Hinrich, Jens Diehl
  • Patent number: 7931756
    Abstract: A method of making a rare-earth alloy granulated powder according to the present invention includes the steps of: preparing a rare-earth alloy powder; generating remnant magnetization in the powder; and granulating the powder by utilizing agglomeration force produced by the remnant magnetization of the powder. Since the agglomeration force produced by the remnant magnetization is utilized, the addition of a granulating agent may be omitted.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: April 26, 2011
    Assignee: Hitachi Metals, Ltd.
    Inventors: Futoshi Kuniyoshi, Tomoiku Otani
  • Publication number: 20110001594
    Abstract: A magnetic article comprises, in total, elements in amounts capable of providing at least one (La1-aMa) (Fe1-b-cTbYc)13-dXe phase and less than 0.5 Vol % impurities, wherein 0?a?0.9, 0?b?0.2, 0.05?c?0.2, ?1?d?+1, 0?e?3, M is one or more of the elements Ce, Pr and Nd, T is one or more of the elements Co, Ni, Mn and Cr, Y is one or more of the elements Si, Al, As, Ga, Ge, Sn and Sb and X is one or more of the elements H, B, C, N, Li and Be. The magnetic article comprises a permanent magnet.
    Type: Application
    Filed: September 30, 2009
    Publication date: January 6, 2011
    Applicant: Vacuumschmelze GmbH & Co. KG
    Inventors: Matthias Katter, Joachim Gerster, Ottmar Roth
  • Patent number: 7790300
    Abstract: An R—Fe—B based thin film magnet including an R—Fe—B based alloy which contains 28 to 45 percent by mass of R element (where R represents at least one type of rare-earth lanthanide elements) and which is physically formed into a film, wherein the R—Fe—B based alloy has a composite texture composed of R2Fe14B crystals having a crystal grain diameter of 0.5 to 30 ?m and R-element-rich grain boundary phases present at boundaries between the crystals. The magnetization characteristics of the thin film magnet are improved. The R—Fe—B based thin film magnet can be prepared by heating to 700° C. to 1,200° C. during physical film formation or/and the following heat treatment, so as to grow crystal grains and form R-element-rich grain boundary phases.
    Type: Grant
    Filed: March 23, 2005
    Date of Patent: September 7, 2010
    Assignees: Japan Science and Technology Agency, Hitachi Metals, Ltd., Namiki Precision Jewel Co., Ltd.
    Inventors: Shunji Suzuki, Kenichi Machida, Eiji Sakaguchi, Kazuya Nakamura
  • Patent number: 7740714
    Abstract: A radially anisotropic magnet is prepared by furnishing a cylindrical magnet-compacting mold comprising a die, a core, and top and bottom punches, packing a magnet powder in the mold cavity, applying a magnetic field across the magnet powder, and forcing the top and bottom punches to compress the magnet powder for compacting the magnet powder by a horizontal magnetic field vertical compacting process. The top punch is divided into segments so that the magnet powder may be partially compressed; in the step of compacting the magnet powder packed in the mold cavity by a horizontal magnetic field vertical compacting process, the magnet powder is partially compressed by the segments of the top punch cooperating with the bottom punch for thereby consolidating the partially compressed zones of magnet powder to a density from 1.
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: June 22, 2010
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Koji Sati, Mitsuo Kitagawa, Takehisa Minowa
  • Patent number: 7686895
    Abstract: A method of forming gray iron components includes applying a substantially uniform magnetic field to gray iron. The method also includes heat-treating the gray iron while the gray iron is within the magnetic field.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: March 30, 2010
    Assignee: Caterpillar Inc.
    Inventors: Ashwin A. Hattiangadi, Adrian Vasile Catalina, Leo Chuzhoy, Jun Cai
  • Publication number: 20100065156
    Abstract: The present invention relates to a method for producing a rare earth anisotropic bond magnet containing a hollow cylindrically shaped magnetic molded body having, at the hollow cylindrically shaped side face thereof, at least 4 or more orientation portions that are oriented with semi-radial distribution by compression molding of a magnetic material after thermally orienting step, wherein intermediate aligning magnetic fields applied in the thermally orienting step to between adjacent cavities are the mostly same in their magnetic directions. A plurality of rare earth anisotropic bond magnets can be efficiently produced at one time.
    Type: Application
    Filed: August 20, 2009
    Publication date: March 18, 2010
    Applicant: Aichi Steel Corporation
    Inventors: Yoshinobu Honkura, Aki Watarai, Hiroshi Matsuoka, Masayuki Kato
  • Patent number: 7645349
    Abstract: A sintered permanent magnet having a composition comprising, by mass, 27-33.5% of R, which is at least one of rare earth elements including Y, 0.5-2% of B, 0.002-0.15% of N, 0.25% or less of O, 0.15% or less of C, and 0.001-0.05% of P, the balance being Fe, wherein it is in the shape of a ring having an outer diameter of 10-100 mm, an inner diameter of 8-96 mm, and a height of 10-70 mm, with a plurality of magnetic poles axially extending on an outer circumferential surface. The distribution of a surface magnetic flux density B0 on magnetic poles in an axial direction of the ring magnet is in a range of 92.5% or more of the maximum of B0.
    Type: Grant
    Filed: October 10, 2006
    Date of Patent: January 12, 2010
    Assignee: Hitachi Metals, Ltd.
    Inventors: Nobuhiko Fujimori, Kazuhiro Sonoda, Takashi Tsukada, Junji Matsushima, Yasushi Kimura, Satoru Kikuchi
  • Patent number: 7618496
    Abstract: A radial anisotropic sintered magnet formed into a cylindrical shape includes a portion oriented in directions tilted at an angle of 30° or more from radial directions, the portion being contained in the magnet at a volume ratio in a range of 2% or more and 50% or less, and a portion oriented in radial directions or in directions tilted at an angle less than 30° from radial directions, the portion being the rest of the total volume of the magnet. The radial anisotropic sintered magnet has excellent magnet characteristics without occurrence of cracks in the steps of sintering and cooling for aging, even if the magnet has a shape of a small ratio between an inner diameter and an outer diameter.
    Type: Grant
    Filed: September 20, 2005
    Date of Patent: November 17, 2009
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Koji Sato, Mitsuo Kawabata, Takehisa Minowa
  • Patent number: 7553793
    Abstract: A method for recovering a catalyst for a fuel cell includes a collection step in which a catalyst is collected by attracting, using a magnetic force, a magnetic material contained in at least one of the catalyst and a carrier on which the catalyst is supported. A system for recovering a catalyst for a fuel cell includes a collection device that attracts, using a magnetic force, a magnetic material contained in at least one of a catalyst and a carrier on which the catalyst is supported.
    Type: Grant
    Filed: September 20, 2006
    Date of Patent: June 30, 2009
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Kazuhiro Taniwaki
  • Patent number: 7531050
    Abstract: A viscous material (4) is obtained by mixing an alloy magnetic powder, magnetized in advance, with a resin. The viscous material (4) thus obtained is applied to an upper surface of a center magnetic leg of an E-shaped core (2). A coil (3) and an I-shaped core are coupled to the E-shaped core (2). An orientation magnetic field is applied by a permanent magnet (5) while the resin is hardened. As a consequence, a bond magnet is obtained which is formed in tight contact with both of a pair of surfaces defining a magnetic gap between the E-shaped core (2) and the I-shaped core.
    Type: Grant
    Filed: September 19, 2003
    Date of Patent: May 12, 2009
    Assignee: Nec Tokin Corporation
    Inventors: Shigun Oh, Teruhiko Fujiwara, Yasubumi Kikuchi, Takashi Yambe
  • Patent number: 7501812
    Abstract: A method of magnetizing a ring-shaped to-be-detected member of a rotation sensor unit, using a magnetizing yoke assembly of a structure having a pair of yoke arms having respective end faces curved arcuately with a space left between those end faces, the method including positioning the to-be-detected member with a ring center thereof aligned with an imaginary line connecting between respective centers of curvature of the curved end faces of the yoke arms, fixing the to-be-detected member with opposite sides of the to-be-detected member spaced an equal distance from the adjacent free end faces and magnetizing the to-be-detected member.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: March 10, 2009
    Assignee: NTN Corporation
    Inventors: Takashi Koike, Tomomi Ishikawa, Hiroshi Isobe
  • Patent number: 7501921
    Abstract: A magnetic roller may comprise a magnetized outer surface and an internal chamber. A temperature control system may be in communication with the internal chamber, and a fluid capable of heat transfer may circulate within the internal chamber and the temperature control system. The magnetic roller may be used to produce magnetic sheets having magnetizable particles that are aligned according the a magnetic field generated by the magnetic roller. The magnetic sheet may be provided in a pliable form wherein magnetizable particles may shift orientation when exposed to the magnetic field. Heat may be transferred between the sheet and the magnetic roller to cause solidification of the magnetic material and prevent dealignment of the magnetic particles.
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: March 10, 2009
    Assignee: MagnetNotes, Ltd.
    Inventors: Raymond S. Richards, Randall Boudouris
  • Patent number: 7479193
    Abstract: A positive magnetostrictive material such as a ferromagnetic alloy is subjected to a magnetic field during annealing treatment while being heated for a predetermined period of time at an elevated temperature below its softening temperature followed by cooling resulting in a treated ferromagnetic material having high tensile strength and positive magnetostriction properties for enhancing use thereof under tensile loading conditions. Such treatment of the ferromagnetic alloy may be augmented by application thereto of a compressive stress.
    Type: Grant
    Filed: February 11, 2005
    Date of Patent: January 20, 2009
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Arthur E. Clark, Marilyn Wun-Fogle, James B. Restorff
  • Patent number: 7470334
    Abstract: A method for manufacturing a sintered compact includes the steps of preparing an alloy powder having a composition represented by Expression 1: RTW (where, R is at least one kind of rare earth metal, T is at least one kind of transition metal, and w defines a relation of 1<w<4), sintering the alloy powder in a vacuum atmosphere or an atmosphere containing gas with a molecular weight of 30 or less, and processing the alloy powder by a hot isostatic pressing. The sintered compact has a high density, and reduces deteriorations in its sintered compact properties such as magnetostrictive properties in an air atmosphere at high-temperatures.
    Type: Grant
    Filed: February 7, 2002
    Date of Patent: December 30, 2008
    Assignee: TDK Corporation
    Inventors: Teruo Mori, Takeshi Nomura, Seigo Tokoro, Naomichi Umehara
  • Publication number: 20080289725
    Abstract: A manufacturing method of magnetic tip of tape measure comprising: first step which is preparing a conducting magnet material which is still not magnetized; second step which is setting said conducting magnet material into a die; third step which is casting a form material to produce a tip of tape measure structure and making said form material to combine with said conducting magnet material; fourth step which is magnetizing said conducting magnet material and manufacturing a magnetic tip of tape measure.
    Type: Application
    Filed: May 25, 2007
    Publication date: November 27, 2008
    Inventor: Huei-Yen LIAO
  • Patent number: 7441324
    Abstract: A method is provided for preserving the transverse biasing of a GMR (or MR) read head during back-end processing. In a first preferred embodiment, the method comprises magnetizing the longitudinal biasing layers of the read head in a transverse direction, so that the resulting field at the position of the transverse biasing layer places it in a minimum of potential energy which stabilizes its direction. The field of the longitudinal biasing layer is then reset to the longitudinal direction in a manner which maintains the transverse biasing direction. In a second embodiment, a novel fixture for mounting the read head during processing includes a magnetic portion which stabilizes the transverse bias of the read head. The two methods may be used singly or in combination.
    Type: Grant
    Filed: July 5, 2005
    Date of Patent: October 28, 2008
    Assignee: Headway Technologies, Inc.
    Inventors: Yimin Guo, Li-Yan Zhu
  • Patent number: 7416613
    Abstract: A method for compacting a magnetic powder in a magnetic field comprising steps of filling a die with a magnetic powder, applying a pulsed magnetic field to the magnetic powder in the die to orientate the powder, and compressing the magnetic powder, wherein the pulsed magnetic field is applied twice or more when density ? of a compacted body of said magnetic powder satisfies the relationship ?=?×H0.5+?(?=0.63 and ?=1 to 2), where H is intensity (T) of the applied magnetic field.
    Type: Grant
    Filed: January 21, 2005
    Date of Patent: August 26, 2008
    Assignee: TDK Corporation
    Inventors: Tsutomu Chou, Gouichi Nishizawa, Masatoshi Hatakeyama, Chikara Ishizaka
  • Patent number: 7399368
    Abstract: A permanent magnet comprises a hard magnetic material that contains at least a rare earth element and an anti-ferromagnetic material, wherein the hard magnetic material and the anti-ferromagnetic material are magnetically coupled. A volume ratio of the anti-ferromagnetic material is 20% or less, based on the permanent magnet.
    Type: Grant
    Filed: May 9, 2006
    Date of Patent: July 15, 2008
    Assignee: Hitachi, Ltd.
    Inventors: Matahiro Komuro, Katsuhiro Komuro
  • Patent number: 7390369
    Abstract: An inventive method of making a rare-earth alloy powder is used to produce a rare-earth sintered magnet, whose main phase has a composition R2T14A (where R is one of the rare-earth elements including Y; T is Fe with or without a non-Fe transition metal; and A is boron with or without carbon).
    Type: Grant
    Filed: April 21, 2004
    Date of Patent: June 24, 2008
    Assignee: Neomax Co., Ltd.
    Inventors: Tomoori Odaka, Yuji Kaneko
  • Patent number: 7384487
    Abstract: It is an object of the present invention to provide a method for producing a magnetostrictive element, capable of assuredly producing a magnetostrictive element by powder metallurgy. In a container for sintering 10, a compact 100 is sintered into a magnetostrictive element having a composition of SmFe2 while held by a support 20 of SmFe2 or Nb stable during the sintering step. The support 20 is composed of particles coming into contact with the compact 100 at multiple points, to control fusion-bonding between the support 20 and the compact 100 to a limited extent.
    Type: Grant
    Filed: February 8, 2006
    Date of Patent: June 10, 2008
    Assignee: TDK Corporation
    Inventors: Teruo Mori, Junichi Takahashi
  • Patent number: 7371290
    Abstract: To avoid various problems caused by remnant magnetization and produce an anisotropic bonded magnet at a reduced cost, a method for producing an anisotropic bonded magnet by feeding a magnetic powder (such as an HDDR powder) into the cavity of a press machine and compacting it is provided. A weak magnetic field is created as a static magnetic field in a space including the cavity by using a magnetic member that is steadily magnetized. The magnetic powder being transported into the cavity is aligned parallel to the direction of the weak magnetic field. Next, the magnetic powder is compressed in the cavity, thereby obtaining a compact.
    Type: Grant
    Filed: December 2, 2002
    Date of Patent: May 13, 2008
    Assignee: Neomax Co., Ltd.
    Inventors: Shuji Mino, Noboru Nakamoto, Tsutomu Harada
  • Patent number: 7371292
    Abstract: A Nd—Fe—B type anisotropic exchange spring magnet is produced by a method of obtaining powder of a Nd—Fe—B type rare earth magnet alloy which comprises hard magnetic phases and soft magnetic phases wherein a minimum width of the soft magnetic phases is smaller than or equal to 1 ?m and a minimum distance between the soft magnetic phases is greater than or equal to 0.1 ?m, obtaining a compressed powder body by compressing the powder, and obtaining the Nd—Fe—B type anisotropic exchange spring magnet by sintering the compressed powder body using a discharge plasma sintering unit.
    Type: Grant
    Filed: November 12, 2003
    Date of Patent: May 13, 2008
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Munekatsu Shimada, Takae Ono, legal representative, Makoto Kano, Tetsurou Tayu, Hideaki Ono
  • Patent number: 7364628
    Abstract: A solid material for a magnet, comprising a rare-earth/iron/nitrogen/hydrogen system magnetic material.
    Type: Grant
    Filed: April 24, 2002
    Date of Patent: April 29, 2008
    Assignee: Asahi Kasei Kabushiki Kaisha
    Inventors: Etsuji Kakimoto, Kiyotaka Dohke, Ichiro Shibasaki, Nobuyoshi Imaoka, Akira Chiba
  • Patent number: 7344606
    Abstract: An anisotropic bonded magnet is produced at a low cost by avoiding various problems caused by remanence. Also, the unit weight and density of a compact is increased by filling even a cavity, having no easily feedable shape, with a magnet powder just as intended. An anisotropic bonded magnet is produced by feeding the cavity of a press machine with a magnetic powder (e.g., an HDDR powder) and compacting it. After the magnetic powder has been positioned outside of the cavity, an oscillating magnetic field (e.g., an alternating magnetic field) is created in a space including the cavity. The magnetic powder is transported into the cavity while being aligned parallel to the oscillating direction of the oscillating magnetic field. Thereafter, the magnetic powder is compressed within the cavity to make a compact for an anisotropic bonded magnet.
    Type: Grant
    Filed: October 18, 2002
    Date of Patent: March 18, 2008
    Assignee: Neomax Co., Ltd.
    Inventors: Shuji Mino, Noboru Nakamoto
  • Patent number: 7344653
    Abstract: A bitumen film containing magnetic powder is heated prior to magnetization to a temperature enabling the magnetic powder particles to be oriented according to the effect of the magnetic field. The bitumen film is sufficiently cooled after magnetization in order to preserve the magnetization, whereby the orientation of the magnetic powder particles, which is adjusted during magnetization, is maintained.
    Type: Grant
    Filed: June 25, 2002
    Date of Patent: March 18, 2008
    Assignee: CWW-Gerko Akustik GmbH
    Inventors: Josef Polak, Christoph Freist, Gerd Mannebach, Ernst Hotz, Joachim Oster
  • Patent number: 7344605
    Abstract: An anisotropic exchange spring magnet powder complexing a hard magnetic material and a soft magnetic material, wherein a rare earth metal element, a transition metal element, boron and carbon and the like are contained, and the hard magnetic material and soft magnetic material have crystal particle diameters of 150 nm or less. A method of producing an anisotropic exchange spring magnet powder comprises treating a crystalline mother material containing a hard magnetic material and soft magnetic material or the crystalline mother material having amorphous parts, in a continuous process composed of an amorphising process and the following crystallizing process, repeated once or more times. An anisotropic exchange spring magnet is obtained by treatment, in an anisotropy- imparting molding process and a solidification process, of an anisotropic exchange spring magnet powder.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: March 18, 2008
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Hideaki Ono, Norihisa Waki, Munekatsu Shimada
  • Patent number: 7338566
    Abstract: The present invention relates to a Sm—Co based magnet alloy useful as a raw material for producing magnets having high magnetic properties, such as sintered or bonded magnets, methods for producing such an alloy, and sintered or bonded magnets having excellent corrosion resistance and high magnetic properties, such as high coercivity and good squareness. The magnetic alloy is composed of an alloy represented by the formula RM with 32.5 to 35.5 wt % R such as Sm and the balance of M such as Co, wherein ratio (B/A) of the X-ray diffraction intensity (B) corresponding to the (119) plane of R2M7 phase to the X-ray diffraction intensity (A) corresponding to the (111) plane of RM5 phase is not higher than 0.1.
    Type: Grant
    Filed: November 8, 2002
    Date of Patent: March 4, 2008
    Assignee: Santoku Corporation
    Inventors: Kenji Konishi, Kazumasa Shintani
  • Patent number: 7320169
    Abstract: In a conventional spin valve the shunt resistance of the pinning layer reduces the overall efficiency of the device. This problem has been overcome by using IrMn for the pinning layer at a thickness of about 20 Angstroms or less. For the IrMn to be fully effective it must be subjected to a two-step anneal, first in the presence of a high field (about 10 kOe) for several hours and then in a low field (about 500 Oe) while it cools. The result, in addition to improved pinning, is the ability to do testing at the full film and full wafer levels.
    Type: Grant
    Filed: May 14, 2004
    Date of Patent: January 22, 2008
    Assignee: Headway Technologies, Inc.
    Inventors: Yun-Fei Li, Hui-Chuan Wang, Tong Zhao, Chyu-Jiuh Torng