Heat Treatment Patents (Class 148/112)
  • Patent number: 11961659
    Abstract: Vibration of an iron core is reduced to reduce transformer noise. An iron core for a transformer comprises a plurality of grain-oriented electrical steel sheets stacked together, wherein at least one of the plurality of grain-oriented electrical steel sheets: (1) has a region in which closure domains are formed in a direction crossing a rolling direction and a region in which no closure domains are formed; and (2) has an area ratio R of 0.10% to 30%, the area ratio R being an area ratio, to the whole grain-oriented electrical steel sheet, of a region in which a shrinkage amount at a maximum displacement point when excited in the rolling direction at a maximum magnetic flux density of 1.7 T and a frequency of 50 Hz is at least 2×10?7 less than a shrinkage amount in the region in which no closure domains are formed.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: April 16, 2024
    Assignee: JFE STEEL CORPORATION
    Inventors: Takeshi Omura, Hirotaka Inoue, Seiji Okabe
  • Patent number: 11942247
    Abstract: Increasing the chromium content of an electrical steel substrate to a level greater than or equal to about 0.45 weight percent (wt %) produced a much improved forsterite coating having superior and more uniform coloration, thickness and adhesion. Moreover, the so-formed forsterite coating provides greater tension potentially reducing the relative importance of any secondary coating.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: March 26, 2024
    Assignee: Cleveland-Cliffs Steel Properties Inc.
    Inventors: Jerry William Schoen, Kimani Tirawa Partin, Christopher Mark Wilkins
  • Patent number: 11866796
    Abstract: Provided is a grain-oriented electrical steel sheet that combines low iron loss and low magnetostriction, together with an advantageous production method therefor. A grain-oriented electrical steel sheet comprises a linear strain portion extending in a direction intersecting a rolling direction of the grain-oriented electrical steel sheet, wherein the linear strain portion has a stress distribution in which a compressive stress region and a tensile stress region alternate in a longitudinal direction of the linear strain portion. The linear strain portion is formed by vibrating the grain-oriented electrical steel sheet in a sheet thickness direction, while irradiating a surface of the grain-oriented electrical steel sheet with an electron beam by repeatedly moving and detaining the electron beam in the direction intersecting the rolling direction of the grain-oriented electrical steel sheet.
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: January 9, 2024
    Assignee: JFE STEEL CORPORATION
    Inventors: Yoshihisa Ichihara, Takeshi Omura, Kunihiro Senda
  • Patent number: 11802319
    Abstract: A double oriented electrical steel sheet includes: 2.0 to 6.0% of Si, 0.0005 to 0.04% of Al, 0.0001 to 0.003% of S, 0.02 to 1.0% of Mn, equal to or less than 0.003% of N, excluding 0%, equal to or less than 0.01% of C, excluding 0%, equal to or less than 0.01% of Ti excluding 0%, 0.005 to 0.10% of P as wt %, and a remainder including Fe and inevitable impurities. Such a double oriented electrical steel sheet satisfies Formula 1: [Mn]/[S]?60,??[Formula 1] where, [Mn] and [S] are contents (wt %) of Mn and S, respectively.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: October 31, 2023
    Assignee: POSCO CO., LTD
    Inventors: Seil Lee, Sang-Woo Lee, Su-Yong Shin
  • Patent number: 11497085
    Abstract: A Fe—Cr alloy having a chemical composition with increased Si and Al contents, in which the chemical composition satisfies the following formula (1) in terms of the Si content, Al content, and Cr content: 14.0?% Si+1.15×% Al+0.35×% Cr ??(1).
    Type: Grant
    Filed: December 5, 2018
    Date of Patent: November 8, 2022
    Assignee: JFE STEEL CORPORATION
    Inventors: Akito Mizutani, Tatsuhiko Hiratani, Mitsuyuki Fujisawa
  • Patent number: 11313011
    Abstract: A method for refining magnetic domains of a grain-oriented electrical steel sheet according to an exemplary embodiment of the present invention includes: a step of preparing a grain-oriented electrical steel sheet; and a step of forming a groove by irradiating a quasi-continuous laser beam of which a duty is from 98.0 to 99.9% on a surface of the grain-oriented electrical steel sheet.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: April 26, 2022
    Assignee: POSCO
    Inventors: Oh-Yeoul Kwon, Ki-Young Min, Se-Min Park, Jong-Tae Park, Seong-Cheol Hong
  • Patent number: 11031163
    Abstract: An excellent low noise property and excellent low iron loss property are obtained. A grain-oriented electrical steel sheet includes refined magnetic domains formed by electron beam irradiation. When the maximum magnetic flux density is 1.7 T, the grain-oriented electrical steel sheet has a residual magnetic flux density of 0.1 to 0.7 times the residual magnetic flux density before the electron beam irradiation and a maximum magnetizing force of 1.1 to 2.0 times the maximum magnetizing force before the electron beam irradiation.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: June 8, 2021
    Assignee: JFE Steel Corporation
    Inventors: Takeshi Omura, Shigehiro Takajo, Hirotaka Inoue
  • Patent number: 10889871
    Abstract: A method of manufacturing a grain-oriented electrical steel sheet is provided. When irradiating the surface of a grain-oriented electrical steel sheet having a sheet thickness t with an electron beam in a direction intersecting a rolling direction, the irradiation energy E(t) of the electron beam is adjusted to satisfy Ewmin(0.23)×(1.61?2.83×t (mm))?E(t)?Ewmin(0.23)×(1.78?3.12×t (mm)) (Expression (1)) using the value of the irradiation energy Ewmin(0.23) that minimizes iron loss for material with a sheet thickness of 0.23 mm.
    Type: Grant
    Filed: October 29, 2013
    Date of Patent: January 12, 2021
    Assignee: JFE Steel Corporation
    Inventors: Shigehiro Takajo, Masanori Uesaka, Kazuhiro Hanazawa
  • Patent number: 10859370
    Abstract: A method for the fabrication of a steel product is provided. The method includes the steps of characterizing a layer of oxides present on a running steel substrate which includes providing a portion of the steel substrate comprising a layer of oxides and the portion defines an oxide surface, collecting light (Lr) from the oxide surface using a hyperspectral camera (20) in order to obtain intensity values (I?,M) respectively representative of an intensity of a part (Lr?,M) of the collected light, each part being respectively collected from one of a plurality of points (M) located on the oxide surface and respectively has a wavelength (?) from a plurality of wavelengths, comparing the obtained intensity values with reference intensity values obtained for reference oxides, and calculating amounts of reference oxides in the layer. A device for characterizing a layer of oxides present on a steel substrate is also provided.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: December 8, 2020
    Assignee: ARCELORMITTAL
    Inventors: Gabriel Fricout, David Glijer
  • Patent number: 10588183
    Abstract: An inline thermal treatment system for thermally treating a continuous product includes a gas supply system configured to supply a first gas flow and a power source configured to supply power. The system includes a plasma torch configured to receive the first gas flow from the gas supply system and power from the power source to form a plasma arc, wherein the plasma arc heats a portion of the continuous product disposed near the plasma arc.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: March 10, 2020
    Assignee: Illinois Tool Works Inc.
    Inventor: Dorival Goncalves Tecco
  • Patent number: 10563275
    Abstract: A method and apparatus are described for creation of amorphous metals using electromagnetic supercooling of a metal/alloy without the utilization of rapid quenching or immaculate process environments. By exposing the cooling melt to electric currents, either induced by an alternating current (AC) magnetic field or supplied directly, crystallization is suppressed, and the melt can reach significant levels of supercooling. With sufficient current densities in the melt, the supercooling can extend all the way into the glass transition range for certain materials, at which point an amorphous metal/alloy is created.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: February 18, 2020
    Assignee: GLASSY METAL, LLC
    Inventors: John T. Preston, Eric Dahlgren, Steve Lemoi
  • Patent number: 10535453
    Abstract: The present invention provides a grain-oriented electrical steel sheet with reduced iron loss over a wide range of sheet thickness by providing a grain-oriented electrical steel sheet with an actually measured sheet thickness t (mm) that includes a closure domain region extending linearly in a direction from 60° to 120° with respect to the rolling direction on a surface of the steel sheet, the closure domain region being formed periodically at a spacing s (mm) in the rolling direction, such that h?74.9t+39.1 (0.26?t), h?897t?174.7 (t>0.26), (w×h)/(s×1000)??12.6t+7.9 (t>0.22), and (w×h)/(s×1000)??40.6t+14.1 (t?0.22), where h (?m) is the depth and w (?m) is the width of the closure domain region.
    Type: Grant
    Filed: October 29, 2013
    Date of Patent: January 14, 2020
    Assignee: JFE Steel Corporation
    Inventors: Shigehiro Takajo, Hirotaka Inoue, Seiji Okabe, Kazuhiro Hanazawa
  • Patent number: 10389216
    Abstract: A stator, a motor and a compressor are provided. The stator includes a stator iron core and a winding. The stator iron core includes: an annular yoke; multiple stator teeth, near ends of the stator teeth being fixedly adjacent to an inner surface of the yoke and projecting inward towards the center of the stator iron core along a radial direction of the yoke, remote ends of the stator teeth that face inward along the radial direction defining a center hole for accommodating a rotor, and the stator teeth being spaced from each other in a circumferential direction; and multiple stator slots, each stator slot being defined between two neighboring stator teeth. The winding is wound around the stator teeth and operable for generating a rotating magnetic field. The yoke has at least two cut edges at an outer periphery thereof, disposed asymmetrically relative to the center.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: August 20, 2019
    Assignee: Danfoss (Tianjin) Ltd.
    Inventors: Weiping Tang, Li Yao, Wanzhen Liu, Guangqiang Liu, Yan Lin, Zhenyu Wang, Meng Wang
  • Patent number: 10147527
    Abstract: A grain-oriented electrical steel sheet exhibits reduced iron loss and reduced noise. The electrical steel sheet has magnetic domains refined by regions with a high lattice defect density being locally formed on the surface of or within the steel sheet, in which the regions with a high lattice defect density has a hardness, as measured by a micro Vickers hardness meter, equal to or lower than that of other regions.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: December 4, 2018
    Assignee: JFE Steel Corporation
    Inventors: Shigehiro Takajo, Seiji Okabe, Hirotaka Inoue, Michiro Komatsubara
  • Patent number: 9984800
    Abstract: A grain-oriented electrical steel sheet allows for manufacture of a transformer that exhibits, when the steel sheet is applied to an iron core thereof, extremely low iron loss and extremely low noise properties, makes highly efficient use of energy, and can be used in various environments. The grain-oriented electrical steel sheet has a strain distribution in regions where closure domains are formed, when observed in a cross section in the rolling direction, with a maximum tensile strain in a sheet thickness direction being 0.45% or less, and with a maximum tensile strain t (%) and a maximum compressive strain c (%) in the rolling direction satisfying Expression (1): t+0.06?t+c?0.35??(1).
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: May 29, 2018
    Assignee: JFE Steel Corporation
    Inventors: Shigehiro Takajo, Ryuichi Suehiro, Hiroi Yamaguchi
  • Patent number: 9875832
    Abstract: Provided is a grain-oriented electrical steel sheet, with reduced iron loss by magnetic domain refining treatment, exhibiting an excellent noise property and effectively reducing noise generated when stacked in an iron core of a transformer. In a grain-oriented electrical steel sheet including a forsterite film and a tension coating on both surfaces, magnetic domain refining treatment has been performed to apply linear thermal strain to the grain-oriented electrical steel sheet, the magnitude of deflection in the rolling direction of the steel sheet is 600 mm or more and 6000 mm or less as the curvature radius of the deflected surface with the surface having the strain applied thereto being the inner side, and the magnitude of deflection in the direction orthogonal to the rolling direction is 2000 mm or more as the curvature radius of the deflected surface with the surface having the strain applied thereto being the inner side.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: January 23, 2018
    Assignee: JFE STEEL CORPORATION
    Inventors: Hiroi Yamaguchi, Seiji Okabe, Hirotaka Inoue, Ryuichi Suehiro
  • Patent number: 9768525
    Abstract: A terminal includes a tubular crimp portion that crimp connects with an electric wire. The tubular crimp portion is composed of a metal member. The tubular crimp portion includes a non-weld portion and a weld portion, the weld portion being formed by welding. A metal base material constituting the metal member of the non-weld portion includes a normal portion and an annealed portion.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: September 19, 2017
    Assignees: FURUKAWA ELECTRIC CO., LTD., FURUKAWA AUTOMOTIVE SYSTEMS INC.
    Inventors: Akira Tachibana, Kengo Mitose, Saburo Yagi
  • Patent number: 9704627
    Abstract: In a metal powder core constructed from soft magnetic material powder and a coil component employing this, a configuration suitable for reduction of a core loss is provided. The metal powder core constructed from soft magnetic material powder is characterized in that Cu is dispersed among the soft magnetic material powder. It is characterized in that, preferably, the soft magnetic material powder is pulverized powder of soft magnetic alloy ribbon and that Cu is dispersed among the pulverized powder of soft magnetic alloy ribbon. Further, it is characterized in that, preferably, the soft magnetic alloy ribbon is a Fe-based nano crystal alloy ribbon or a Fe-based alloy ribbon showing a Fe-based nano crystalline structure and that the pulverized powder has a nano crystalline structure.
    Type: Grant
    Filed: January 15, 2013
    Date of Patent: July 11, 2017
    Assignee: HITACHI METALS, LTD.
    Inventors: Tetsuro Kato, Shin Noguchi, Kazunori Nishimura
  • Patent number: 9340859
    Abstract: A method of manufacturing a high strength galvanized steel sheet has a first heating step including heating to 400° C. to 750° C. in an atmosphere containing O2: 0.1 to 20 percent and H2O: 1 to 50 percent and heating to 600° C. to 850° C. in an atmosphere containing O2: 0.01 to less than 0.1 percent and H2O: 1 to 20 percent is applied to a steel sheet, a second heating step includes holding the steel sheet in an atmosphere containing H2: 1 to 50 percent and having a dew point of 0° C. or lower at 750° C. to 900° C. for 15 to 600 s, cooling to a temperature of 450° C. to 550° C., and holding is performed at that temperature for 10 to 200 s, and a galvanization treatment is applied.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: May 17, 2016
    Assignee: JFE Steel Corporation
    Inventors: Mai Miyata, Yoshitsugu Suzuki, Yoshiyasu Kawasaki, Tatsuya Nakagaito, Shinjiro Kaneko, Yasunobu Nagataki
  • Patent number: 9185749
    Abstract: An apparatus for heating a workpiece, particularly a roller bearing, having low power consumption, rapid heating and low weight, includes a truncated conical contact surface for horizontal workpiece bearing, a single-layer solenoid coil underneath the contact surface, following the contact surface shape relative to its covered surface and gradient, resulting in magnetic lines of force concentrated in an internal workpiece area and a driver resonant circuit producing an alternating magnetic field in the solenoid coil. The workpiece is inductively heated quickly without requiring pushing onto a magnet yoke, because of its horizontal bearing. The planar configuration of the solenoid coil, following the contact surface shape, causes operation of the driver resonant circuit at high frequency, resulting in low power consumption. The profile of lines of force causes the magnetic field to directly enter areas to be heated on an upper workpiece surface, ensuring homogeneous workpiece heating.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: November 10, 2015
    Assignee: Simatec AG
    Inventors: Hans Gfeller, Max Wyssman
  • Publication number: 20150132547
    Abstract: A grain-oriented electrical steel sheet, on which magnetic domain refining treatment by strain application has been performed, has an insulating coating with excellent insulation properties and corrosion resistance. The grain-oriented electrical steel sheet is obtained by irradiating a steel sheet with a high-energy beam to apply, to the steel sheet, linear strain extending in a direction that intersects a rolling direction of the steel sheet, and then re-forming an insulating coating on the steel sheet, in which in an irradiation mark region due to the high-energy beam, a ratio of an area containing defects on the insulating coating is 40% or less, a maximum width of the irradiation mark region in the rolling direction is 250 ?m or less, and a thickness of the insulating coating is 0.3 ?m or more and 2.0 ?m or less.
    Type: Application
    Filed: December 27, 2012
    Publication date: May 14, 2015
    Inventors: Hirotaka Inoue, Shigehiro Takajo, Hiroi Yamaguchi, Seiji Okabe, Kazuhiro Hanazawa
  • Patent number: 8936687
    Abstract: In a method for manufacturing grain oriented electrical steel sheets from a slab, controlling the steel sheet temperature so as to satisfy T (t)<FDT?(FDT?700)×t/6 (wherein T (t): steel sheet temperature (° C.), FDT: finishing temperature (° C.) and t: time (sec) after the completion of finish rolling) throughout the entire length of a coil during cooling after the completion of finish rolling in hot rolling, and controlling the steel sheet temperature of a tip portion of the coil representing 10% of the length of the coil to be not less than 650° C. at a lapse of 3 seconds from the completion of hot rolling, thus manufacturing a grain oriented electrical steel sheet exhibiting excellent magnetic properties throughout the entire coil length.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: January 20, 2015
    Assignee: JFE Steel Corporation
    Inventor: Kenichi Sadahiro
  • Publication number: 20140373340
    Abstract: A higher-strength, non-grain-oriented electrical strip with high polarization, the electrical strip consisting of a steel alloy, wherein the limits of the following elements are maintained: Mn between 0.35 mass % and 0.65 mass %, Si between 2.0 mass % and 3.0 mass %, Al between 0.8 mass % and 1.4 mass %, and P between 0.14 mass % and 0.24 mass %; and a method for the production thereof.
    Type: Application
    Filed: September 17, 2012
    Publication date: December 25, 2014
    Inventors: Franz Dorninger, Roman Sonnleitner, Herbert Kreuzer
  • Patent number: 8911574
    Abstract: A method for manufacturing high-Si cold rolled steel sheets includes heating a cold rolled steel sheet with a direct flame burner (A) having an air ratio of not more than 0.89 when the temperature of the cold rolled steel sheet that is being increased is in the temperature range of not less than 300° C. and less than Ta° C., subsequently heating the cold rolled steel sheet with a direct flame burner (B) having an air ratio of not less than 0.95 when the temperature of the cold rolled steel sheet is in the temperature range of not less than Ta° C. and less than Tb° C., and subsequently soak-annealing the cold rolled steel sheet in a furnace having an atmospheric gas composition which has a dew point of not more than ?25° C. and contains 1 to 10 volume % of H2 and the balance of N2.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: December 16, 2014
    Assignee: JFE Steel Corporation
    Inventors: Shinji Ootsuka, Junichiro Hirasawa, Hideyuki Takahashi, Naoto Yoshimi, Hideki Nagano
  • Patent number: 8689761
    Abstract: A forged exhaust poppet valve and a method of solution heat treating the same are provided. The forged exhaust poppet valve (10) includes a head portion (12) which has a seat portion (14) on the outer periphery thereof and is integral with a diametrically tapered neck portion (16) connected to a stem portion (18). Using a radio-frequency heating apparatus, a solution heat treatment is given to a predetermined transitional region (A) of the neck portion and the stem portion that is exposed to exhaust air during a valve opening period such that the grain size in the region (A) does not exceed ASTM 10, thereby securing a necessary high-temperature creep strength in the region (A) and a necessary hardness (wear resistance) in the seat portion (14) and thereby rendering the exhaust poppet valve highly durable.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: April 8, 2014
    Assignee: Nittan Valve Co., Ltd.
    Inventors: Yasuhito Tanaka, Hisanaga Yokoyama
  • Patent number: 8557058
    Abstract: The invention provides a non-oriented electrical steel sheet excellent in yield strength for use as an iron core material for high rpm motors that does not sacrifice yield or productivity in motor core punching or steel sheet production, which non-oriented electrical steel sheet is given a chemical composition of, in mass %, C: 0.01 to 0.05%, Si: 2.0 to 4.0%, Mn: 0.05 to 0.5%, Al: 3.0% or less and Nb: 0.01 to 0.05%, and optionally Ni at a preferable content of more than 0.5% and less than 3.0%, the balance being Fe and unavoidable impurities, Mn and C contents expressed in mass % are made to satisfy Mn?0.6-10×C, recrystallized portion area fraction is made 50% or greater, yield strength in tensile testing is made 650 MPa or greater, and average-grain diameter viewed in steel sheet cross-section is made 40 ?m or less, and electrical steel sheet production is conducted using a hot-rolled sheet whose transition temperature in impact testing is 70° C. or less.
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: October 15, 2013
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Yoshihiro Arita, Hidekuni Murakami, Yutaka Matsumoto, Saori Haranaka, Takeshi Kubota
  • Publication number: 20130228251
    Abstract: A grain oriented electrical steel sheet includes forsterite film on a surface of base steel sheet and a selenium-concentrated portion in at least one of the forsterite film and an interface between the forsterite film and the base steel sheet by a presence ratio expressed as area-occupying ratio of the Se-concentrated portion, of at least 2%, per 10000 ?m2 of the surface of the base steel sheet, which has been subjected to magnetic domain refinement treatment by electron beam irradiation.
    Type: Application
    Filed: August 4, 2011
    Publication date: September 5, 2013
    Applicant: JFE STEEL CORPORATION
    Inventors: Yukihiro Shingaki, Noriko Makiishi, Makoto Watanabe
  • Patent number: 8361243
    Abstract: An iron or iron-base alloy sheet having high proportion of {100} texture and a method of manufacturing the same. A method of forming grains having {100} plane parallel to the sheet surface is disclosed. A Fe or Fe-base alloy sheet is annealed at austenite (?) temperature while minimizing an effect of oxygen in the sheet or on surfaces of the sheet or a heat treatment atmosphere, and then the above sheet is subject to phase transformation to ferrite (?). On surfaces of the resulting sheet, a high proportion of {100} texture develops. A method of manufacturing electrical steel sheet is disclosed. The grains with {100} texture on surfaces grow to have a grain size of at least half the thickness of the sheet by a ??? transformation. By adopting the above disclosed methods, an iron or iron-base alloy sheet with excellent texture can be simply manufactured within short time.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: January 29, 2013
    Inventor: Jin Kyung Sung
  • Patent number: 8277574
    Abstract: There is provided a method for manufacturing a grain-oriented electromagnetic steel sheet whose iron losses are reduced by laser beam irradiation, capable of improving the iron losses in both the L-direction and the C-direction while easily ensuring high productivity. The method for manufacturing a grain-oriented electromagnetic steel sheet reduces iron losses by scanning and irradiating a grain-oriented electromagnetic steel sheet with a continuous-wave laser beam condensed into a circular or elliptical shape at constant intervals in a direction substantially perpendicular to a rolling direction of the grain-oriented electromagnetic steel sheet, wherein when an average irradiation energy density Ua is defined as Ua=P/(Vc×PL) (mJ/mm2), where P (W) is average power of the laser beam, Vc (m/s) is a beam scanning velocity, and PL (mm) is an irradiation interval in a rolling direction, PL and Ua are in the following ranges: 1.0 mm?PL?3.0 mm, 0.8 mJ/mm2?Ua?2.0 mJ/mm2.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: October 2, 2012
    Assignee: Nippon Steel Corporation
    Inventors: Tatsuhiko Sakai, Hideyuki Hamamura, Masao Yabumoto
  • Patent number: 8240922
    Abstract: A wheel support bearing assembly, which enables an increase in the strength and the fatigue strength of its wheel mounting flange or vehicle body fitting flange against high stress and repeated stress and the suppression of the increase of the number of processes, includes an inner member and an outer member rotatable relative to each other through rolling elements. The flange is formed on the inner member or the outer member. A component part having the flange is a hot-forged product of steel in which a matrix portion is formed as a standard structure and the non-standard structural portion is formed on the surface of the flange. The non-standard structure is formed of either of a fine ferrite/pearlite structure, an upper bainite structure, a lower bainite structure, and a tempered martensite structure, or mixture of two or more of these structures.
    Type: Grant
    Filed: July 10, 2006
    Date of Patent: August 14, 2012
    Assignee: NTN Corporation
    Inventors: Isao Hirai, Kohei Yoshino, Takayasu Takubo, Akira Fujimura, Takuya Obata
  • Patent number: 8157928
    Abstract: A main object thereof is to provide a non-oriented electrical steel sheet being excellent in surface characteristics and having both excellent mechanical characteristics and magnetic characteristics necessary for a rotor of rotating machines such as motors and generators which rotate at a high speed, and a method for producing the same. To achieve the object, the present invention provides a non-oriented electrical steel sheet comprising in % by mass: 0.06% or less of C; 3.5% or less of Si; from 0.05% or more to 3.0% or less of Mn; 2.5% or less of Al; 0.30% or less of P; 0.04% or less of S; 0.02% or less of N; at least one element selected from the group consisting of Nb, Ti, Zr and V in the predetermined range; and a balance consisting of Fe and impurities; and having a recrystallized fraction being less than 90%.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: April 17, 2012
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Ichirou Tanaka, Hiroshi Fujimura, Hirokatsu Nitomi, Hiroyoshi Yashiki, Kouji Nishida, Hiroki Takamaru
  • Patent number: 7905965
    Abstract: A method of making a soft magnetic material with fine grain structure is provided. The method includes the steps of providing a soft magnetic starting material; heating the soft magnetic starting material to a temperature at which the material has a microstructure comprising at least two solid phases; and deforming the soft magnetic starting material. An electrical device comprising a magnetic component is provided. The magnetic component comprises a soft magnetic material having a grain size less than about 3 micrometers. The material has a composition that comprises at least two solid phases at temperatures greater than about 500° C.
    Type: Grant
    Filed: November 28, 2006
    Date of Patent: March 15, 2011
    Assignee: General Electric Company
    Inventors: Michael Francis Xavier Gigliotti, Richard DiDomizio, Luana Emiliana Iorio, Francis Johnson, Pazhayannur Ramanathan Subramanian, Mahesh Chandran
  • Patent number: 7763120
    Abstract: The present invention provides a method of production of grain-oriented electrical steel sheet greatly reducing the Watt loss of the grain-oriented electrical steel sheet and making the magnetostriction as small as possible, that is, a method of production of grain-oriented electrical steel sheet with small magnetostriction by improving the magnetic properties by irradiation by a finely focused laser beam comprising using a power modulated laser controlled in maximum power density to 1×102 to 1×104 W/mm2 to optimize the amount of strain given by laser irradiation in both the sheet width direction and rolling direction and, in particular, to make the modulation duty 70% to less than 100%.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: July 27, 2010
    Assignee: Nippon Steel Corporation
    Inventors: Tatsuhiko Sakai, Hideyuki Hamamura
  • Patent number: 7566371
    Abstract: Non-oriented electrical steel sheet remarkably improved in magnetic properties in the rolling direction by a method superior in cost and productivity, that is, non-oriented electrical steel sheet excellent in magnetic properties in the rolling direction comprising, by wt %, Si in an amount of 2.0% or less, Mn in 3.0% or less, Al in 1.0% to 3.0%, at least one of Sn, Sb, Cu, Ni, Cr, P, REM, Ca, and Mg in a total of 0.002% to 0.5%, and a balance of Fe and unavoidable impurities and having a ratio (B50L/Bs) of the magnetic flux density B50L in the rolling direction after stress relief annealing and a saturated magnetic flux density Bs of 0.85 or more and an core loss W15/50L of 2.0 W/kg or less, produced by the method of annealing the hot band at 800° C. to 1100° C. for 30 seconds or more to achieve a crystal grain size after final annealing of 50 ?m or less, skin pass rolling the sheet by a reduction of 3% to 10%, then stress relief annealing it. Further, a cold rolling reduction of 60% to 75% is preferable.
    Type: Grant
    Filed: February 17, 2006
    Date of Patent: July 28, 2009
    Assignee: Nippon Steel Corporation
    Inventors: Yoshihiro Arita, Kenichi Murakami
  • Patent number: 7479621
    Abstract: A heat exchange system and processes for a magnetic annealing tool is provided. The system includes a process chamber housing workpieces to be processed; an element chamber partly surrounding the periphery of the process chamber, at least one vacuum for drawing a vacuum in fluid communication with the process chamber and separately with the element chamber in order to apply a vacuum to either or both of the process and element chamber so as to promote radiation heating of the workpieces; at least one supply of fluid in communication with the process chamber and separately with the element chamber to supply a cooling gas so as to promote conductive cooling of the workpieces; a cooling chamber disposed to surround the element chamber; and magnetic field generator for generating a magnetic field disposed on the outer periphery of the cooling chamber.
    Type: Grant
    Filed: December 6, 2005
    Date of Patent: January 20, 2009
    Assignee: Praxair Technology, Inc.
    Inventors: Richard John Jibb, John Fredric Billingham, Edward Duffy, Noel O'Shaughnessy, Kevin McMahon, Peter Ferris
  • Patent number: 7465361
    Abstract: In a method for manufacturing a grain-oriented electrical steel sheet using steel containing less than 100 ppm of Al and 50 ppm or less each of N, S, and Se as a starting material, purification annealing is performed at 1050° C. or more, the partial pressure of hydrogen in the atmosphere being adjusted to 0.4 atm or less in a temperature range above 1170° C. for a purification annealing conducted at a temperature above 1170° C., or 0.8 atm or less in a temperature range of 1050° C. or more for a purification annealing conducted at a temperature of 1170° C. or less, to prevent deterioration of the bend properties due to the impurities.
    Type: Grant
    Filed: October 27, 2003
    Date of Patent: December 16, 2008
    Assignee: JFE Steel Corporation
    Inventors: Takashi Terashima, Minoru Takashima, Yasuyuki Hayakawa
  • Patent number: 7442260
    Abstract: The present invention provides a grain-oriented electrical steel sheet with an extremely low core loss by scanning by a small focused laser beam spot and a method of production of the same, that is, a grain-oriented electrical steel sheet improved in electrical characteristics by scanning by a continuous wave fiber laser of the TEM00 mode with a wavelength ? of 1.07???2.10 ?m substantially perpendicular to the steel sheet rolling direction and at substantially constant spacing and a method of production of the same, wherein a rolling direction focused spot diameter d (mm) of the irradiated beam, a linear scan rate V (mm/s) of the laser beam, an average output P (W) of the laser, a width of the formed laser scribing traces or with of the electrical domains Wl (mm), and a rolling direction Pl (mm) of the laser scribing traces are in the following ranges: 0<d?0.20 0.001?P/V?0.012 0<Wl?0.20 1.5?Pl?11.0.
    Type: Grant
    Filed: March 5, 2004
    Date of Patent: October 28, 2008
    Assignee: Nippon Steel Corooration
    Inventors: Tatsuhiko Sakai, Hideyuki Hamamura, Naoya Hamada
  • Patent number: 7377986
    Abstract: The present invention relates to a method for producing a non-oriented electrical steel with improved magnetic properties and improved resistance to ridging, brittleness, nozzle clogging and magnetic aging. The chromium bearing steel is produced from a steel melt which is cast as a thin slab or conventional slab, cooled, hot rolled and/or cold rolled into a finished strip. The finished strip is further subjected to at least one annealing treatment wherein the magnetic properties are developed, making the steel sheet of the present invention suitable for use in electrical machinery such as motors or transformers.
    Type: Grant
    Filed: July 27, 2006
    Date of Patent: May 27, 2008
    Assignee: AK Steel Properties, Inc.
    Inventors: Jerry W. Schoen, Robert J. Comstock, Jr.
  • Patent number: 7282102
    Abstract: A method for manufacturing a high silicon grain-oriented electrical steel sheet. In a method for manufacturing a high silicon grain-oriented electrical steel sheet, comprising the steps of: reheating and hot-rolling a steel slab to produce a hot-rolled steel sheet; annealing the hot-rolled sheet and cold rolling the annealed steel sheet so as to adjust a thickness of the steel sheet; decarburization annealing the cold rolled steel sheet; and finish-annealing the decarburization annealed steel sheet for secondary recrystallization, the improved method further comprising the step of: coating a powder coating agent for siliconization on a surface of the decarburization annealed steel sheet in a slurry state, the powder coating agent including 100 part by weight of MgO powder and 0.
    Type: Grant
    Filed: November 11, 2003
    Date of Patent: October 16, 2007
    Assignee: Posco
    Inventors: Kyu-Seung Choi, Jong-Soo Woo, Jae-Kwan Kim
  • Patent number: 7150092
    Abstract: A method of manufacturing a spin-valve thin-film magnetic element is provided. The spin-valve thin-film magnetic element includes a free magnetic layer and laminates of pinned magnetic layers and antiferromagnetic layers formed on two surfaces of the free magnetic layer.
    Type: Grant
    Filed: July 10, 2003
    Date of Patent: December 19, 2006
    Assignee: Alps Electric Co., Ltd.
    Inventor: Naoya Hasegawa
  • Patent number: 7096075
    Abstract: For determination as to whether there is a possibility that temperature control satisfying conditions according to an upper limit LH_i and a lower limit LL_i of the annealing control temperatures of annealing object steel sections i will be realized under restrictions on limit values U and D of the control temperature increase and decrease rates, computation is performed without using dynamic programming requiring an enormous amount of data on a continuous annealing line of a steelwork. Annealing object steel sections in an annealing object steel band 12 to be computed are assigned numbers 1, 2, . . . , n in order from the first time division in the direction of movement. T_i is a time required to pass the annealing object steel section i through a predetermined point at which the steel section undergoes temperature control. LH_1=LL_1=b is given. X_i=[IL_i?D*T_i, IH_i+U*T_i] is computed. When X_L_i1f, Y_i=X_iL_i. When X_i L_i=f, Y_i=X_i. Y—i is computed from i=1 to i=n in ascending order.
    Type: Grant
    Filed: April 20, 2004
    Date of Patent: August 22, 2006
    Assignee: International Business Machines Corporation
    Inventors: Kunikazu Yoda, Hiroyuki Okano
  • Patent number: 7045025
    Abstract: A low core loss grain-oriented electrical steel sheet that does not have a significant deterioration in a magnetic flux density and a decrease of a space factor, and which may withstand stress-relieving annealing is provided. Melted and re-solidified layers can be formed on either or both of the surfaces of the grain-oriented electrical steel sheet that extend in a direction that is perpendicular to the rolling direction (e.g., in the direction of the width thereof), at a cyclic interval of not less than approximately 2 mm to less than approximately 5 mm in the rolling direction. The melted and re-solidified layers may be provided on each surface of the grain-oriented electrical steel sheet, and can have an aspect ratio that is a ratio of the depth to the width of the melted and re-solidified layer of not less than approximately 0.20 and a depth of not less than approximately 15 ?m. In addition, the melted and re-solidified layers can be formed by using a laser.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: May 16, 2006
    Assignee: Nippon Steel Corporation
    Inventors: Hideyuki Hamamura, Tatsuhiko Sakai, Naoya Hamada
  • Patent number: 6964711
    Abstract: A process for the production of grain oriented electrical Fe-Si strips in which a Si-containing alloy is directly cast as a strip between 2.5–5.0 mm thick and cold rolled in one stage, or in more stages with intermediate annealing, to a final thickness of between 0.15–1.0 mm. The strip is then continuously annealed to carry out the primary recrystallization and then annealed to carry out the oriented secondary recrystallization. The process further includes that after solidification of the strip, and before its coiling, a phase transformation from Ferrite to Austenite is induced into the metal matrix for a volume fraction between 25–60%, obtained by controlling the alloy composition so that the Austenite fraction is allowed within the stability equilibrium between the two phases. The strip is then deformed by rolling in-line with the casting step to obtain a deformation higher than 20% in the temperature interval 1000–1300° C.
    Type: Grant
    Filed: December 18, 2001
    Date of Patent: November 15, 2005
    Assignee: Thyssenkrupp Acciai Speciali Terni S.p.A.
    Inventors: Stefano Fortunati, Stefano Cicale′, Giuseppe Abbruzzese
  • Patent number: 6936792
    Abstract: Furnace cart assembly for loading high temperature vacuum furnaces for treating target material, for example, metal parts, under extreme temperature and vacuum environments. The furnace cart includes electrical heating elements as an integral part of the cart, which elements are adapted for releasable connection to the furnace electrical supply. When so connected the furnace cart heating elements can form a part of the heating system of the furnace. The lower part of the furnace cart assembly, including a frame above and supported on wheels, the frame having heat reflection means on at least Its upper surfaces providing some protection from heat is preferably also protected from heat during furnace operation by insulating material above the frame (the material desirably supported by the frame but separated therefrom).
    Type: Grant
    Filed: May 22, 2002
    Date of Patent: August 30, 2005
    Inventor: William R. Jones
  • Patent number: 6925352
    Abstract: Disclosed are a method and a system for predicting precipitation kinetics in precipitation-hardenable alloys, such as the 7000 series aluminum alloys, and for optimizing conditions for thermal treatment thereof. The method includes the steps of measuring a real-time temperature of an alloy component during the thermal treatment process, and using a signal in dependence upon the real-time temperature to predict, using executable code, a current state of the alloy component. The executable code includes a series of rate equations and initial parameters for a particular alloy. Optionally, the initial parameters for the particular alloy are provided after the code is in execution. The thermal treatment process is terminated when a predetermined state of the alloy component is predicted.
    Type: Grant
    Filed: August 17, 2001
    Date of Patent: August 2, 2005
    Assignee: National Research Council of Canada
    Inventors: Xijia Wu, Cheung J. Poon, Donald Raizenne
  • Patent number: 6864793
    Abstract: A magnetic marker comprises a magnetically switchable wire and a magnetic casing that covers the magnetically switchable wire. The magnetically switchable wire is formed of a magnetic material that undergoes occurrence of sharp magnetic inversion when an alternating field of intensity higher than its coercive force is applied to it. The magnetic casing is formed of a magnetically hard or semihard magnetic material and can apply a bias magnetic field to the magnetically switchable wire to prevent magnetic inversion of the magnetically switchable wire. Heat-treated portions and high-coercivity regions, which are not heat-treated, are formed alternately in the longitudinal direction on the magnetic casing. The heat-treated portions are given magnetic properties different from magnetic properties essential to the magnetic casing by heat treatment such as annealing.
    Type: Grant
    Filed: March 14, 2002
    Date of Patent: March 8, 2005
    Assignee: NHK Spring Co., Ltd.
    Inventors: Yoshiki Ono, Tatsuya Kurihara, Shigemi Sato, Sumikazu Oki
  • Patent number: 6858095
    Abstract: A grain-oriented electrical steel sheet comprising 2.5-4.5% Si by weight and measuring 0.36-1.00 mm in thickness is imparted with a good core loss value for its thickness by controlling its C content, flux density, grain boundary configuration, and deviation degree of crystal orientation in the grains.
    Type: Grant
    Filed: February 14, 2001
    Date of Patent: February 22, 2005
    Assignee: Nippon Steel Corporation
    Inventors: Yasunari Yoshitomi, Hiroaki Masui, Nobuyuki Takahashi
  • Patent number: 6773514
    Abstract: The present invention relates to a method for producing non grain-oriented magnetic steel sheets in which hot strip is produced from an input stock such as cast slabs, strip, roughed strip, or thin slabs, made of steel comprising (in weight %) C: 0.001-0.05%; Si: ≦1.5%; Al: ≦0.4% with Si+2Al≦1.7%; Mn: 0.1-1.2%; if necessary up to a total of 1.5% of alloying additions such as P, Sn, Sb, Zr, V, Ti, N, Ni, Co, Nb and/or B; with the remainder being iron as well as the usual accompanying elements; in that the input stock is hot-rolled directly from the casting heat or after preceding reheating to a reheating temperature between min. 1000° C. and max. 1180° C.
    Type: Grant
    Filed: June 6, 2002
    Date of Patent: August 10, 2004
    Assignee: Thyssen Krupp Stahl AG
    Inventors: Rudolf Kawalla, Hans Pircher, Karl Ernst Friedrich, Brigitte Hammer, Jürgen Schneider, Olaf Fischer, Carl-Dieter Wuppermann
  • Patent number: 6767412
    Abstract: The invention relates to a method for producing non-grain-oriented hot-rolled magnetic steel sheet in which from a raw material such as cast slabs, strip, roughed strip or thin slabs produced from a steel comprising (in weight %) C: 0.0001-0.05%; Si: ≦1.5%; Al: ≦0.5%, wherein [% Si]+2[% Al]≦1.8; Mn: 0.1-1.2%; if necessary up to a total of 1.5% of alloying additions such as P, Sn, Sb, Zr, V, Ti, N, Ni, Co, Nb and/or B, with the remainder being iron and the usual impurities, in a finishing roll line at temperatures above the Ar1 temperature, a hot strip with a thickness ≦1.5 mm is rolled, wherein at least the last forming pass of hot rolling is carried out in the mixed region austenite/ferrite and wherein the total deformation &egr;H achieved during rolling in the mixed region austenite/ferrite is <35%.
    Type: Grant
    Filed: January 14, 2003
    Date of Patent: July 27, 2004
    Assignee: ThyssenKrupp Stahl AG
    Inventors: Karl Ernst Friedrich, Brigitte Hammer, Rudolf Kawalla, Olaf Fischer, Jürgen Schneider, Carl-Dieter Wuppermann
  • Patent number: RE39482
    Abstract: Grain-oriented magnetic steel sheet made by the method-including hot rolling and final finish annealing, wherein (1) the O content in the steel slab is limited to up to about 30 ppm; (2) for the entire steel sheet having final thickness including an oxide film before final finish annealing, from among impurities, the Al content is limited to up to about 100 wtppm, and the respective contents of B, V, Nb, Se, S, P, and N, to up to about 50 wtppm each; and (3) during final finish annealing, the N content in the steel is, at least in the temperature region of from about 850 to 950° C., limited within the range of from about 6 to 80 wtppm.
    Type: Grant
    Filed: October 3, 2002
    Date of Patent: February 6, 2007
    Assignee: JFE Steel Corporation
    Inventors: Yasuyuki Hayakawa, Mitsumasa Kurosawa, Michiro Komatsubara