Utilizing Fluid Contact Other Than Flame Patents (Class 148/197)
  • Patent number: 10486261
    Abstract: An integrated plasma cutting system includes a plasma cutting power supply and a motion control device to move a torch along a desired cut path relative to a workpiece. The system also includes a torch height control device to adjust a gap between a tip of the torch and the workpiece and a gas control device to regulate a gas used in the integrated plasma cutting system. The system further includes a centralized controller that includes an integrated microprocessor architecture that controls a sequence of the plasma arc, controls the regulation of the gas used in the integrated plasma cutting system gases, and controls coordination of the movement of the torch along the cut path with adjusting the gap without aid of an intervening microprocessor architecture in any one of the plasma cutting power supply, the motion control device, the torch height control device and the gas control device.
    Type: Grant
    Filed: March 20, 2015
    Date of Patent: November 26, 2019
    Assignee: LINCOLN GLOBAL, INC.
    Inventors: Sriram Harkare, Christopher Williams
  • Patent number: 9844791
    Abstract: A micronozzle device can include at least one layer having a plurality of nozzle exits for delivering a mixture of a first fluid and a second fluid, at least one first-fluid header layer having a plurality of first microchannels for receiving the first fluid, at least one first-fluid via layer adjacent the at least one first-fluid header layer to receive the first fluid and direct it to respective ones of the plurality of nozzle exits, at least one second-fluid header layer having a plurality of second microchannels for receiving the second fluid, at least one second-fluid via layer adjacent the at least one second-fluid header layer to receive the second fluid and direct it respective ones of the plurality of nozzle exits, and a plurality of first curtain-gas nozzles located at a first side of the micronozzle device and a plurality of second curtain-gas nozzles located at a second side of the micronozzle device.
    Type: Grant
    Filed: October 8, 2013
    Date of Patent: December 19, 2017
    Assignee: Oregon State University
    Inventors: Richard Todd Miller, Neill Thornton
  • Patent number: 7985305
    Abstract: A polymeric quenchant. The polymeric quenchant comprises an inorganic nanoparticle, a water-soluble polymer, and water, wherein a weight ratio of the inorganic nanoparticle, water-soluble polymer and water is about 0.05-5:1-5:100. The cooling rate of steel during a quenching process can be adjusted by regulating the components and ratios of the adjusted by regulating the components and ratios of the polymeric quenchant to achieve desirable steel properties.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: July 26, 2011
    Assignees: Industrial Technology Research Institute, Gelie Co., Ltd.
    Inventors: George Ho, Li-Kuei Lin, Wen-Faa Kuo
  • Patent number: 7589161
    Abstract: A polymeric quenchant. The polymeric quenchant comprises an inorganic nanoparticle, a water-soluble polymer, and water, wherein a weight ratio of the inorganic nanoparticle, water-soluble polymer and water is about 0.05-5:1-5:100. The cooling rate of steel during a quenching process can be adjusted by regulating the components and ratios of the adjusted by regulating the components and ratios of the polymeric quenchant to achieve desirable steel properties.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: September 15, 2009
    Assignees: Industrial Technology Research Institute, Gelie Co., Ltd.
    Inventors: George Ho, Li Kuei Lin, Wen-Faa Kuo
  • Patent number: 7377987
    Abstract: A steel cutting system has a cutting torch on a first side of a slab of steel. A pair of oxygen jets is placed on a second side of the slab of steel.
    Type: Grant
    Filed: January 18, 2005
    Date of Patent: May 27, 2008
    Assignee: Edw. C. Levy Co.
    Inventor: Julien Goffette
  • Publication number: 20080115862
    Abstract: The invention relates to a method for thermal cutting, wherein a cutting gas is piped into a cutting nozzle and guided on to a work piece to be processed by means of the cutting nozzle. According to the invention the cutting gas is at least reduced in a periodically repetitive manner wherein the time in which the cutting gas is guided onto the work piece in an undiminished manner is shorter than half of a period. In addition the invention relates to a corresponding device with a valve.
    Type: Application
    Filed: October 22, 2007
    Publication date: May 22, 2008
    Inventor: Wolfgang Danzer
  • Publication number: 20030034093
    Abstract: A method and apparatus for laser cutting a target material is disclosed. The method includes the steps of generating laser pulses from a laser system and applying the laser pulses to the target material so that the laser pulses cut through the material. The laser pulses have an approximately ellipse shaped spot, have a temporal pulse width shorter than about 100 nanoseconds, and have an energy density from about 2 to about 20 times the ablation threshold energy of the target material. The laser pulses are applied to the material such that the major axis of the ellipse shaped spot moves parallel to the cutting direction. The spot has a leading edge and a trailing edge on the major axis, and the energy density of each laser pulse increases from zero to a maximum along the leading edge and decreases back to zero along the trailing edge.
    Type: Application
    Filed: October 3, 2002
    Publication date: February 20, 2003
    Inventors: James H. Morris, Michael Powers, Harry Rieger