With Producing Or Treating Of Workpiece Having Plural Noncarburized Or Non-nitrided Layers Or Mechanically Engaged Article Or Stock Patents (Class 148/220)
  • Patent number: 5334263
    Abstract: A superalloy article has a nickel-based superalloy substrate containing TCP-phase forming elements such as rhenium, chromium, tantalum and tungsten. A carbide precipitate-containing region is formed within the substrate extending to a carbide depth below a surface of the substrate, preferably by depositing carbon on the surface of the substrate and diffusing the carbon into the substrate. An aluminum-rich diffusion layer extends from the surface of the substrate to an aluminide depth below the surface of the substrate. Preferably, the carbide depth is about the same as the aluminide depth. The presence of the carbide precipitates inhibits the formation of the deleterious TCP-phase.
    Type: Grant
    Filed: December 5, 1991
    Date of Patent: August 2, 1994
    Assignee: General Electric Company
    Inventor: Jon C. Schaeffer
  • Patent number: 5294264
    Abstract: A method of nitriding a refractory-nitride forming metal or metalloid articles and composite articles. A consolidated metal or metalloid article or composite is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article or composite is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article or composite is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid or composite to an article or composite of refractory nitride. In addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.
    Type: Grant
    Filed: January 10, 1992
    Date of Patent: March 15, 1994
    Assignee: Martin Marietta Energy Systems, Inc.
    Inventors: Terry N. Tiegs, Cressie E. Holcombe, Norman L. Dykes, Ogbemi O. Omatete, Albert C. Young
  • Patent number: 5228929
    Abstract: Disclosed is a process for manufacturing a corrosion resistant iron-alloy, powered metal or sintered carbide component. In a first step, the component is subjected to an initial thermochemical treatment preferably consisting of nitriding, in a closed furnace in order to form onto the surface of the component a nitrogen diffusion zone followed by the superficial layer consisting of .gamma.' and .epsilon. nitride layers. In a second step, an aqueous solution comprising oxygen, carbon, nitrogen and sulfur is introduced into the furnace for a period of time sufficient to allow transformation of the .epsilon. nitride layer into a porous layer of ferrous oxide(s). This process is particularly efficient and permits to produce a superficial porous ferrous oxide layer thicker than 2 .mu.m onto a nitride steel component.
    Type: Grant
    Filed: May 8, 1991
    Date of Patent: July 20, 1993
    Inventors: Wladyslaw Panasiuk, Michel Korwin
  • Patent number: 5226975
    Abstract: A method of forming a wear-resistant coating for internal combustion engine component parts which allows the part to remain dimensionally stable under severe engine operating conditions is provided. The coating is formed by a two step method. First, the engine part is coated with chromium to form a chromium base layer. Second, the chromium coated part is subjected to a reactive gas plasma in a reaction chamber at an elevated temperature and under an applied electrical potential. The gas of the plasma reacts with the chromium to form the wear-resistant layer. Preferably, the reactive gas is nitrogen which reacts with the chromium to form a chromium nitride surface layer on the chromium base layer.
    Type: Grant
    Filed: March 20, 1991
    Date of Patent: July 13, 1993
    Assignee: Cummins Engine Company, Inc.
    Inventors: James E. Denton, Buel D. Napier
  • Patent number: 5190598
    Abstract: The steam turbine components having erosion resistant multiple treatments are disclosed. The components include a ferrous substrate having an integral boride layer which typically reduces the underlying fatigue strength of the substrate and includes cracks or defects disposed therein. The boride layer is coated with a sealing layer to substantially cover the cracks or defects for improving the surface erosion resistance and restorings the substrate fatigue strength of the steam turbine component.
    Type: Grant
    Filed: April 13, 1992
    Date of Patent: March 2, 1993
    Assignee: Westinghouse Electric Corp.
    Inventor: Javaid I. Qureshi
  • Patent number: 5154779
    Abstract: A method of nitriding an article of refractory-nitride-forming metal or metalloids. A consolidated metal or metalloid article is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid to an article of refractory nitride. in addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.
    Type: Grant
    Filed: February 18, 1992
    Date of Patent: October 13, 1992
    Assignee: Martin Marietta Energy Systems, Inc.
    Inventors: Cressie E. Holcombe, Norman L. Dykes, Terry N. Tiegs