Utilizing Therein Factors Or Percentages Related To Metal Or Metal Alloy Composition (i.e., Including Carbon Content) Patents (Class 148/505)
  • Patent number: 6221183
    Abstract: A high-strength low-thermal-expansion alloy consisting of, by weight, 0.06 to 0.50% C, 25 to 65% in total of one or both of 65% or less Co and less than 30% Ni, and balance of Fe as a main component, other optional elements and unavoidable impurities, and having a primary phase of austenite phase and martensite phase induced by working. A wire is made from the alloy.
    Type: Grant
    Filed: November 15, 1993
    Date of Patent: April 24, 2001
    Assignee: Hitachi Metals, Ltd.
    Inventors: Koji Sato, Rikizo Watanabe, Takehiro Ohno, Yoshiki Masugata, Minoru Takuwa, Shigeaki Sato, Yoshimi Senda
  • Patent number: 6136102
    Abstract: A maraging steel containing the following: Ni 14-23 wt. %, Mo 4-13 wt. %, Al 1-3.5 wt. %, C.ltoreq.0.01 wt. %, remainder Fe and impurities resulting from the processing. The composition also preferably satisfies the following conditions:Ni+Mo=23-27 wt. %, inclusively;Ni+2.5.times.Mo+2.3.times.Al.gtoreq.38 wt. %.
    Type: Grant
    Filed: February 3, 1999
    Date of Patent: October 24, 2000
    Assignee: Imphy Ugine Pricision
    Inventor: James Davidson
  • Patent number: 6110829
    Abstract: An aluminum fill process for sub-0.25 .mu.m technology integrated circuits that has a reflow temperature less than 400.degree. C. that has low alloy resistivity and excellent electromigration characteristics. The aluminum allow is composed of Al-1% Ge-1% Cu.
    Type: Grant
    Filed: October 23, 1997
    Date of Patent: August 29, 2000
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Paul Raymond Besser, Robin W. Cheung, Guarionex Morales
  • Patent number: 5989366
    Abstract: A method of manufacturing a thick steel product of high strength and high toughness having excellent weldability with minimal variation of material properties, comprises heating a steel raw material to the temperature of Ac.sub.3 to 1350.degree. C., hot rolling and then cooling at the cooling rate of 10.degree. C./sec. or less. The steel raw material has the following composition:C: 0.001-0.25 wt %;Mn: 1.0-3.0 wt %;Ti: 0.005-0.20 wt %;Nb: 0.005-0.20 wt %;B: 0.0003-0.0050 wt %; andAl: 0.01-0.100 wt %balance substantially Fe and incidental impurities. The composition has a transformation start temperature (Bs) of 670.degree. C. or less. Since the steel product obtained by the method has no variation in physical properties regardless of variation in cooling rate, it is possible to supply steel products of high strength and high toughness which have uniform microstructure and properties along their thickness direction and are excellent in weldability.
    Type: Grant
    Filed: March 14, 1997
    Date of Patent: November 23, 1999
    Assignee: Kawasaki Steel Corporation
    Inventors: Tohru Hayashi, Mitsuhiro Okatsu, Fumimaru Kawabata, Keniti Amano
  • Patent number: 5792286
    Abstract: A high-strength thin plate, such as for IC lead frames, of an iron-nickel-cobalt alloy which is able to withstand repeated bending and is corrosion resistance and etchable, the alloy containing 27 to 30 wt. % N:, 5 to 18 wt. % Co, 0.10 to 3.0 wt. % Mn, 0.10 wt. % or less Si, 0.010 to 0.075 wt. % C, 0.001 to 0.014 wt. % N, less than 2.0 ppm H, 0.0040 wt. % or less S, 0.004 wt. % or less P, 0.0050 wt. % or less O, 0.01 to 0.06 wt. % Cr, 0.01 to 1.0 wt. % Mo and the balance being Fe and unavoidable impurities wherein 63.5 wt. %.ltoreq.2Ni+Co+Mn.ltoreq.65 wt. % for Co<10 wt. % and 69.5 wt. %.ltoreq.2Ni+Co+Mn.ltoreq.74.5 wt. % for Co>10 wt. %.
    Type: Grant
    Filed: March 20, 1995
    Date of Patent: August 11, 1998
    Assignee: NKK Corporation
    Inventors: Tadashi Inoue, Kiyoshi Tsuru, Naotsugu Yamanouchi, Tomoyoshi Okita
  • Patent number: 5688341
    Abstract: A hydrogen-absorbing alloy electrode utilizes as an electrode material a hydrogen-absorbing alloy having selectively oriented crystals, which is expressed in terms of a specific maximum value obtained from analysis of powder X-ray diffractometry. This electrode, in which the hydrogen-absorbing alloy used is hardly pulverized upon repeated charge-discharge cycles and oxidation thereof is suppressed, gives metal hydride alkaline secondary batteries having excellent cycle characteristics. A method for evaluating hydogen-absorbing alloys for electrode comprises, utilizing the fact that there exists a clear relationship between specific parameters obtained by analyzing data based on the hydrogen-absorbing alloy to be evaluated and the characteristics of the electrode obtained therefrom, preparing and using analytical curves with the specific parameters.
    Type: Grant
    Filed: July 1, 1996
    Date of Patent: November 18, 1997
    Assignee: Sanyo Electric Co. Ltd
    Inventors: Takahiro Isono, Hiroshi Watanabe, Shin Fujitani, Hiroshi Nakamura, Yumiko Nakamura, Ikuo Yonezu
  • Patent number: 5599407
    Abstract: A method for estimating the inclusion content of a metal, the method involving three steps. The first step is to section the metal to create an exposed inner surface of the metal. The second step is to measure the reflectance of the exposed inner surface of the metal. The third step is to estimate the inclusion content of the metal from the reflectance. When a physical property of the metal, such as tensile strength, elongation or impact strength, is related to the inclusion content of the metal, then the physical property can be estimated from the reflectance of the exposed inner surface of the metal.
    Type: Grant
    Filed: September 29, 1995
    Date of Patent: February 4, 1997
    Assignee: The Dow Chemical Company
    Inventors: Andrew G. Haerle, Barry A. Mikucki
  • Patent number: 5496424
    Abstract: A hydrogen absorbing alloy represented by the general formula R.sub.1-x A.sub.x (Ni.sub.5-y B.sub.y).sub.z wherein R is Mm (misch metal) or La, A is at least one element selected from the group consisting of Ce, Nd, Pr, Sm and Y, B is at least one element selected from the group consisting of Al, Sn, V, Cr, Mn, Fe, Co and Cu, 0.ltoreq.x.ltoreq.0.5, 0<y.ltoreq.1.0 and 0.8.ltoreq.z.ltoreq.1.2. The alloy is prepared by subjecting an alloy material of the above composition to a heat treatment so that when the plateau region of the resulting hydrogen absorbing alloy is expressed by a normal cumulative distribution function wherein the hydrogen content of the alloy is taken as frequency and the logarithm of the equilibrium hydrogen pressure of the alloy as a random variable, the alloy is at least 0.04 to up to 0.10 in standard deviation .sigma..
    Type: Grant
    Filed: October 5, 1993
    Date of Patent: March 5, 1996
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Shin Fujitani, Hiroshi Nakamura, Hiroshi Watanabe, Ikuo Yonezu, Toshihiko Saito
  • Patent number: 5279683
    Abstract: A method of producing a high-strength cold-rolled steel sheet suitable for working uses which utilizes a steel material having the following composition: not more than 0.006 wt % of C, not more than 0.5 wt % of Si, not more than 2.0 wt % of Mn, and not less than 0.01 wt % but not more than 0.10 wt % of Ti, the Ti, C and N contents being determined to meet the condition of Ti>(48/12) C wt %+(48/14) N wt %, the steel also consisting essentially of not less than 0.0010 wt % but not more than 0.0100 wt % of Nb, not less than 0.0002 wt % but not more than 0.0020 wt % of B, not less than 0.03 wt % but not more than 0.20 wt % of P, not more than 0.03 wt % of S, not less than 0.010 wt % but not more than 0.100 wt % of Al, not more than 0.008 wt % of N, not more than 0.0045 wt % of O, and the balance substantially Fe and incidental inclusions. The steel material is cast and hot-rolled and then subjected to a cold rolling conducted at a sheet temperature not higher than 300.degree. C.
    Type: Grant
    Filed: May 29, 1992
    Date of Patent: January 18, 1994
    Assignee: Kawasaki Steel Corporation
    Inventors: Susumu Okada, Tojiro Ikeda, Susumu Satoh, Hideo Abe, Jun-ichi Mano, Norio Ohta
  • Patent number: 5217544
    Abstract: The present invention relates to a process for the production of a stainless steel with a high elastic limit and a high breaking load, with a martensite ferrite two-phase structure exhibiting good malleability and good abrasion resistance, in which the steel of the following weight composition:carbon lower than 0.10%chromium between 16 and 20%nickel between 0.2 and 2%manganese lower than 2%copper lower than 2%the remainder being iron and impurities which are inherent in the method of production, is subjected to a quenching after being raised to a temperature of between 800.degree. to 1200.degree. C., and at least one cold rolling to a content of more than 15%.The present invention also relates to a stainless steel obtained by this process.
    Type: Grant
    Filed: December 24, 1991
    Date of Patent: June 8, 1993
    Assignee: Ugine S.A.
    Inventors: Serge Baltenneck, Jean-Claude Charenton
  • Patent number: 5188677
    Abstract: A method of manufacturing a titanium alloy magnetic disk substrate comprising (a) cold-rolling an alloy plate at a rolling ratio of no less than 30%, the alloy plate comprising 0.5 wt. % to 1.0 wt. % of Mo and containing oxygen, nitrogen and carbon in amounts such that O+2N+0.75C is from 0.03 wt. % to 0.5 wt. % of the titanium alloy, and the balance being Ti, wherein O is the wt. % of oxygen, N is the wt. % of nitrogen and C is the wt. % of C to form a magnetic disk substrate material and then (b) thermal-flattening the magnetic substrate material from step (a) under a condition defined as follows:500.ltoreq.T.ltoreq.-(150/11).multidot.t+7,850/11 1.ltoreq.twhere T represents a thermal-flattening temperature in .degree.C., and t represents a thermal-flattening time in hours.
    Type: Grant
    Filed: June 21, 1991
    Date of Patent: February 23, 1993
    Assignee: NKK Corporation
    Inventors: Hideaki Fukai, Hiroyoshi Suenaga, Kuninori Minakawa
  • Patent number: 5127965
    Abstract: An Fe-Ni alloy sheet for a shadow mask, which consists essentially of:nickel: from 34 to 38 wt. %,silicon: from 0.01 to 0.15 wt. %,manganese: from 0.01 to 1.00 wt. %, andthe balance being iron and incidental impurities;the surface portion of the alloy sheet having a silicon (si) segregation rate, as expressed by the following formula, of up to 10%: ##EQU1## and the alloy sheet having a surface roughness which satisfies all the following formulae (1) to (3):0.3 .mu.m.ltoreq.Ra.ltoreq.0.8 .mu.m (1)where, Ra: center-line mean roughness;3.ltoreq.Rkr.ltoreq.
    Type: Grant
    Filed: July 1, 1991
    Date of Patent: July 7, 1992
    Assignee: NKK Corporation
    Inventors: Tadashi Inoue, Masayuki Kinoshita, Tomoyoshi Okita