Of Aluminum(al) Or Aluminum Alloy Patents (Class 148/523)
-
Patent number: 11529684Abstract: A metal laminating/shaping device includes a base, a head unit including a base material injection device, and drive devices that change a positional relationship between the base and the head unit in a spatial coordinate system. The base material injection device includes a base material heating unit that heats a base material that is a metal piece having a fixed shape such that a temperature of an interior of the base material is raised to a temperature below a melting point and a temperature of a surface of the base material is raised to the melting point, and a base material injection unit that injects the heated base material toward the base. The metal laminating/shaping device can form a metal shaped article having a complicated structure at a low cost.Type: GrantFiled: March 29, 2016Date of Patent: December 20, 2022Assignee: TOSHIBA MITSUBISHI-ELECTRIC INDUSTRIAL SYSTEMS CORPORATIONInventor: Norihiro Suzuki
-
Patent number: 11407171Abstract: In the context of a system that uses a pellet-type extruder head to form solid objects by moving the extruder relative to a build surface while melting and extruding pellets of raw material, systems and methods are provided which comprise cooling at least a portion of a pathway by which the pellets of raw material are conveyed to a rotating extruder lead screw of the extruder head.Type: GrantFiled: April 15, 2019Date of Patent: August 9, 2022Assignee: TITAN ADDITIVE LLCInventors: Clay M. Guillory, Nicholas Booth
-
Patent number: 10975461Abstract: Techniques are disclosed for casting high-strength and highly formable metal products from recycled metal scrap without the addition of substantial or any amounts of primary aluminum. Additional alloying elements, such as magnesium, can be added to metal scrap, which can be cast and processed to produce a desirable metal coil at final gauge having desirable metallurgical and mechanical properties, such as high strength and formability. Thus, inexpensive and recycled metal scrap can be efficiently repurposed for new applications, such as automotive applications and beverage can stock.Type: GrantFiled: March 23, 2018Date of Patent: April 13, 2021Assignee: Novelis Inc.Inventors: Sazol Kumar Das, Simon William Barker, Milan Felberbaum, Rajeev G. Kamat, Duane E. Bendzinski, Robert Bruce Wagstaff, Samuel R. Wagstaff
-
Patent number: 10688592Abstract: The present invention is directed to friction stir welding, and in particular to apparatuses, methods, and systems using friction stir welding to join one or more components comprising an aluminum 2xxx alloy with one or more components comprising an aluminum 7xxx alloy. The aluminum 2xxx alloy may be in the form of a filler insert, for example a sheet or strip, between two larger aluminum 7xxx alloy components, or the aluminum 2xxx alloy may be in the form of a larger component welded directly to an aluminum 7xxx alloy component of comparable size. Weldments according to the present invention have improved resistance to stress corrosion cracking without the need for post-weld artificial aging and are useful in many applications, for example in construction of spacecraft parts.Type: GrantFiled: September 5, 2017Date of Patent: June 23, 2020Assignee: United Launch Alliance L.L.CInventor: Brian D. Vickers
-
Patent number: 10577684Abstract: A process is disclosed for restructuring crystalline grain structure and grain size of a material to produce an ultrafine-grain structure. An electron beam source is configured in relation to specific properties of a material forming a solid body to selectively irradiate a surface and a subsurface of that body with electrons at desired locations on the body and to create at least one selectively localized molten pool of defined size in the body. Heat is generated sufficiently rapidly by the beam source to create thermal gradients of sufficient magnitude to permit the body outside of the pool to act as a heat sink and rapidly cool the at least one molten pool, whereby an ultrafine-grain structure and grain size is produced by freezing grain growth upon occurrence of crystal nucleation.Type: GrantFiled: November 13, 2017Date of Patent: March 3, 2020Assignee: Mainstream Engineering CorporationInventors: Ryan D. Reeves, Thomas M. Lasko, Justin J. Hill
-
Patent number: 10279385Abstract: The invention relates to a method for forming an aluminium composite material which has a core alloy made from an aluminium alloy of type AA5xxx or AA6xxx and at least one outer aluminium alloy layer provided on one or both sides, wherein the aluminium composite material is formed and the outer aluminium alloy layer provided on one or both sides has a yield strength Rp0.2 of 25 MPa to 60 MPa in the soft or solution-annealed state. The method enables the production of large-surface, heavily formed aluminium alloy sheet metal parts, in particular also in outer skin quality.Type: GrantFiled: November 22, 2017Date of Patent: May 7, 2019Assignee: Hydro Aluminium Rolled Products GmbHInventors: Henk-Jan Brinkman, Stefan Keller, Olaf Engler, Natalie Hörster, Dietmar Schröder, Holger Aretz
-
Patent number: 10032527Abstract: A method for fabricating assemblies includes providing first and second components that include ceramic, metal, or composite; positioning a multiphase joining interlayer between the first and second components, wherein the joining interlayer includes a first phase that melts at a first temperature and a second phase interspersed throughout the first phase, and wherein the second phase melts at a second temperature that is lower than the melting temperature of the first phase; and heating the joining interlayer to a temperature in the range of 725° C. to 1450° C. for a predetermined period of time to soften the first phase and melt the second phase, wherein the first phase remains in a solid or a semi-solid state, and wherein the second phase segregates to the boundaries of the first phase and transforms the joining interlayer into a substantially porosity-free adherent material that joins the first component to the second component.Type: GrantFiled: June 8, 2016Date of Patent: July 24, 2018Assignee: EDISON WELDING INSTITUTE, INC.Inventors: Edward D. Herderick, Kirk E. Cooper, Nathan D. Ames
-
Patent number: 10006724Abstract: Brazing sheet consisting of a series AA3xxx aluminum alloy core sheet, coated, on at least one side, with a cladding layer made of a first so-called intermediate aluminum alloy containing 0.35 to 1.8 wt % manganese, less than 0.3 wt % of each of other elements, and a total of 1 wt % balance aluminum, itself coated with a second series AA4xxx alloy cladding layer, in which the alloy of the core sheet is selected, and the core sheet developed, such as to have an essentially recrystallized structure after brazing.Type: GrantFiled: February 26, 2015Date of Patent: June 26, 2018Assignee: CONSTELLIUM NEUF-BRISACHInventors: Malika Marie Perrier, Alireza Arbab, Lionel Peguet, Myriam Delhomme
-
Patent number: 9855592Abstract: The invention relates to a method for forming an aluminum composite material which has a core alloy made from an aluminum alloy of type AA5xxx or AA6xxx and at least one outer aluminum alloy layer provided on one or both sides, wherein the aluminum composite material is formed and the outer aluminum alloy layer provided on one or both sides has a yield strength Rp0.2 of 25 MPa to 60 MPa in the soft or solution-annealed state. The method enables the production of large-surface, heavily formed aluminum alloy sheet metal parts, in particular also in outer skin quality.Type: GrantFiled: April 27, 2015Date of Patent: January 2, 2018Assignee: Hydro Aluminium Rolled Products GmbHInventors: Henk-Jan Brinkman, Stefan Keller, Olaf Engler, Natalie Hörster, Dietmar Schröder, Holger Aretz
-
Patent number: 9719156Abstract: The present invention relates to an aluminum alloy product for use as a finstock material within brazed heat exchangers and, more particularly, to a finstock material having high strength and conductivity after brazing. The invention is an aluminum alloy finstock comprising the following composition in weight %: Fe ?0.8-1.25; Si ?0.8-1.25; Mn 0.70-1.50; Cu 0.05-0.50; Zn up to 2.5; other elements less than or equal to 0.05 each and less than or equal to 0.15 in total; and balance aluminum. The invention also relates to a method of making the finstock material.Type: GrantFiled: December 7, 2012Date of Patent: August 1, 2017Assignee: Novelis Inc.Inventors: Andrew D. Howells, Kevin Michael Gatenby, Pierre Henri Marois, Thomas L. Davisson, Fred Perdriset
-
Publication number: 20150144229Abstract: An aluminum alloy brazing sheet having a core material of an aluminum alloy, and a filler material cladded on the core is disclosed. The core material is an aluminum alloy having about 0.05 to about 1.2 mass Si, about 0.05-about 1.0 mass % Fe, about 0.05-about 1.2 mass % Cu, and about 0.6-about 1.8 mass % Mn, balance Al and the inevitable impurities. The, filler material includes an aluminum alloy having about 2.5-about 13.0 mass % Si. Also, there is provided a method of manufacturing such an aluminum alloy brazing sheet.Type: ApplicationFiled: October 30, 2014Publication date: May 28, 2015Inventors: Makoto Ando, Akio Niikura, Yoichiro Bekki
-
Publication number: 20150101787Abstract: Method for producing AIMn strip or sheet for making components by brazing and products obtained by said method, in particular fin materials of thin gauge used in heat exchangers. Rolling slabs are produced from a melt with <0.3% Si, ?0.5% Fe, ?0.3% Cu, 1.0-2.0% Mn, ?0.5% Mg, ?4.0% Zn, ?0.5% Ni, ?0.3% each of group IVb, Vb, or Vib elements, and unavoidable impurity elements, as well as aluminium that, prior to hot rolling, are preheated at <550° C. to control the number and size of dispersoid particles, hot rolled into a hot strip, cold rolled into a strip with total reduction of at least 90%, and heat treated to obtain a 0.2% proof stress value that is 50-90% of its proof stress value in the as cold rolled condition and in a range between 100 and 200 MPa. The strip may alternatively be produced by twin-roll strip casting.Type: ApplicationFiled: May 23, 2013Publication date: April 16, 2015Applicant: Gränges Sweden ABInventor: Anders Oskarsson
-
Patent number: 8999083Abstract: An aluminum alloy fin material for a heat exchanger having suitable strength before brazing enabling easy fin formation, having high strength after brazing, having a high thermal conductivity (electrical conductivity) after brazing, and having superior sag resistance, erosion resistance, self corrosion prevention, and sacrificial anode effect, a method of production of the same, and a method of production of a heat exchanger using the fin material are provided, that is, an aluminum alloy fin material having a chemical composition of Si: 0.7 to 1.4 wt %, Fe: 0.5 to 1.4 wt %, Mn: 0.7 to 1.4 wt %, and Zn: 0.5 to 2.5 wt %, Mg as an impurity limited to 0.Type: GrantFiled: June 8, 2007Date of Patent: April 7, 2015Assignee: Nippon Light Metal Company, Ltd.Inventors: Hideki Suzuki, Tomohiro Sasaki, Masae Nagasawa, Nobuki Takahashi
-
Publication number: 20150020927Abstract: A method for producing a product includes the steps of taking heated and cooled extrusion, preferably aluminum, and reheating a selected area of the extrusion. There is the step of requenching the extrusion. There is the step of forming the reheated area into a desired shape. A method for producing a ladder.Type: ApplicationFiled: October 9, 2014Publication date: January 22, 2015Applicant: WERNER CO.Inventor: Richard M. Kelly
-
Publication number: 20140342185Abstract: A cold rolled steel sheet according to the present invention satisfies an expression of (5×[Si]+[Mn])/[C]>11 when [C] represents an amount of C by mass %, [Si] represents an amount of Si by mass %, and [Mn] represents an amount of Mn by mass %, a metallographic structure before hot stamping includes 40% to 90% of a ferrite and 10% to 60% of a martensite in an area fraction, a total of an area fraction of the ferrite and an area fraction of the martensite is 60% or more, a hardness of the martensite measured with a nanoindenter satisfies an H2/H1<1.10 and ?HM<20 before the hot stamping, and TS×? which is a product of a tensile strength TS and a hole expansion ratio ? is 50000 MPa·% or more.Type: ApplicationFiled: January 11, 2013Publication date: November 20, 2014Inventors: Toshiki Nonaka, Satoshi Kato, Kaoru Kawasaki, Toshimasa Tomokiyo
-
Publication number: 20140134458Abstract: An aluminum-alloy brazing sheet having good corrosion resistance is provided. The aluminum-alloy brazing sheet comprises a core made of an aluminum alloy, a brazing filler metal made of an Al—Si based alloy and clad on one surface of the core, and a sacrificial anode material clad on the other surface of the core, the sacrificial anode material containing Zn: 1.0 to 6.0 mass %, Si: 0.5 to 1.5 mass %, Fe: 0.5 to 1.5 mass %, and Ti: 0.05 to 0.20 mass %, the core containing Si: 0.5 to 1.2 mass %, Fe: 0.05 to 0.60 mass %, Cu: 0.3 to 1.0 mass %, Mn: 0.5 to 1.6 mass %, and Ti: 0.05 to 0.20 mass %, and Vickers hardness of the sacrificial anode material after heating conducted in the same way as the brazing of the brazing sheet being not less than 30 Hv. A method of manufacturing the aluminum-alloy brazing sheet is also provided.Type: ApplicationFiled: November 12, 2013Publication date: May 15, 2014Applicant: UACJ CORPORATIONInventor: Atsushi FUKUMOTO
-
Patent number: 8685183Abstract: Metal ingots for forming single-crystal shape-memory alloys (SMAs) may be fabricated with high reliability and control by alloying thin layers of material together. In this method, a reactive layer (e.g., aluminum) is provided in thin flat layers between layers of other materials (e.g., copper and layers of nickel). When the stacked layers are vacuum heated in a crucible to the melting temperature of the reactive layer, it becomes reactive and chemically bonds to the other layers, and may form eutectics that, as the temperature is further increased, melt homogeneously and congruently at temperatures below the melting temperatures of copper and nickel. Oxidation and evaporation are greatly reduced compared to other methods of alloying, and loss of material from turbulence is minimized.Type: GrantFiled: January 8, 2013Date of Patent: April 1, 2014Assignee: Ormco CorporationInventors: Alfred D. Johnson, Walter A. Bachmann
-
Patent number: 8613374Abstract: A fuel tank for a vehicle is made of a cast aluminum alloy and has good ductility and toughness. The cast aluminum alloy is subjected to a heat treatment at a temperature of no less than about 350° C. and no more than about 390° C. to possess a Vickers hardness of about 70 HV or less.Type: GrantFiled: November 21, 2006Date of Patent: December 24, 2013Assignee: Yamaha Hatsudoki Kabushiki KaishaInventors: Toru Kitsunai, Atsushi Hirose
-
Patent number: 8557062Abstract: A copper-free wrought aluminum alloy product and method for producing the same are provided. In one example, the alloy has a composition of about 0.01 to about 1.5 weight percent silver; about 1.0 to about 3.0 weight percent magnesium; about 4.0 to about 10.0 weight percent zinc; about 0.05 to about 0.25 weight percent zirconium; a maximum of 0.15 weight percent iron; a maximum of 0.15 weight percent silicon; and a remainder including aluminum, incidental elements, and impurities. In one example, the alloy may be used to manufacture structural elements for aircraft.Type: GrantFiled: January 14, 2008Date of Patent: October 15, 2013Assignee: The Boeing CompanyInventors: Burke L. Reichlinger, Brien J. McElroy, Iulian Gheorghe
-
Publication number: 20130255840Abstract: An aluminum electric wire includes an annealing conductor that is made up of elemental wires made of an aluminum alloy containing 0.90-1.20 mass % Fe, 0.10-0.25 mass % Mg, 0.01-0.05 mass % Ti, 0.0005-0.0025 mass % B, and the balance being Al and has a tensile strength of 110 MPa or more, a breaking elongation of 15% or more, and an electric conductivity of 58% IACS or more, and an insulating material covering the conductor. The wire is produced by casting an aluminum alloy prepared by rapidly solidifying a molten aluminum alloy having the above composition, producing the wires by subjecting the alloy to plasticity processing, producing the conductor by bunching the wires, subjecting the wires or the conductor to annealing at 250° C. or higher, and then covering the conductor with the insulator.Type: ApplicationFiled: May 17, 2013Publication date: October 3, 2013Applicants: AUTONETWORKS TECHNOLOGIES, LTD., SUMITOMO ELECTRIC TOYAMA CO., LTD., SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO WIRING SYSTEMS, LTD.Inventors: Yasuyuki OTSUKA, Masanobu YOSHIMURA, Kotaro MAEDA, Jun YOSHIMOTO, Masashi KIMURA, Taichirou NISHIKAWA, Misato KUSAKARI, Shinichi KITAMURA, Hiroaki TAKAI
-
Publication number: 20130240095Abstract: High temperature heat treatable aluminum alloys that can be used at temperatures from about ?420° F. (?251° C.) up to about 650° F. (343° C.) are described. The alloys are strengthened by dispersion of particles based on the L12 intermetallic compound Al3X. These alloys comprise aluminum; silicon; at least one of scandium, erbium, thulium, ytterbium, and lutetium; and at least one of gadolinium, yttrium, zirconium, titanium, hafnium, and niobium. Magnesium and copper are optional alloying elements.Type: ApplicationFiled: April 30, 2013Publication date: September 19, 2013Applicant: United Technologies CorporationInventor: Awadh B. Pandey
-
Publication number: 20130022301Abstract: With regard to an Al—Cr—Zr based alloy having annealing temper, a high temperature strength at 180 to 200 degrees C. is ensured. An aluminum alloy for a plain bearing having improved fatigue resistance is to be provided. An aluminum alloy for a plain bearing solving the problems has a composition of 3 to 7 mass % Mg, 0.1 to 0.3 mass % Cr, and 0.1 to 0.3 mass % Zr, with the balance being Al and inevitable impurities. A principal structure of the aluminum alloy consist of an Al matrix containing solute Mg, minute particles of Cr, and Zr.Type: ApplicationFiled: December 22, 2010Publication date: January 24, 2013Applicant: TAIHO KOGYO CO., LTD.Inventors: Takashi Tomikawa, Shinichiro Sakamoto, Katsumi Yamamoto
-
Patent number: 8323427Abstract: Disclosed embodiments disclose processes for making shaped metal alloy parts, and deal more particularly with forming features and reducing residual stresses in such parts. Residual stresses introduced into a metal alloy part by heat treatment, which may include solution annealing and quenching, are reduced by processes that plastically deform the part while forming part features. An embodiment comprises: producing a metal alloy blank; subjecting the blank to a process that introduces residual stresses into the blank and plastically deforming the blank to reduce the residual stresses in the blank. Embodiments comprise: subjecting a part to a heat treatment that introduces residual stresses in the part; and age forming the part to shape the part and reduce the residual stresses, incrementally forging at least one feature into the part and reducing the residual stresses in the part, friction welding the part, or gauge rolling the cast part to desired dimensions.Type: GrantFiled: September 14, 2009Date of Patent: December 4, 2012Assignee: The Boeing CompanyInventors: Kevin T. Slattery, Krishnan K. Sankaran, James B. Castle, Christopher S. Huskamp
-
Publication number: 20120067101Abstract: A forging tool for precision forging of components of intermetallic or high-temperature stable phases with high yield stresses and shapeable at temperatures up to 1400° C. is made of graphite with a low-melting metal or a low-melting metal alloy infiltrated into its open-pored cavities, where metal carbides are created by heat treatment and form with the graphite a two-phase material hardened by subsequent quenching. The tool features high strength thanks to the yield stress increasing as the temperature increases at forging temperatures up to 1400° C., and is oxidation-resistant. It is electrically conductive, and has a low heat capacity, so that rapid inductive heating of the tool involving only low energy expenditure, short forging cycles and an inexpensive isothermic shaping process are possible. It has good lubrication properties, low wear and low manufacturing costs.Type: ApplicationFiled: September 13, 2011Publication date: March 22, 2012Applicant: ROLLS-ROYCE DEUTSCHLAND LTD & CO KGInventors: Felix TURLEY, Dan ROTH-FAGARASEANU, Kim GROSSMANN
-
Patent number: 8053087Abstract: The invention relates to an antifriction composite comprising a metal support layer, an intermediate layer produced from an aluminum alloy and a bearing layer produced from an aluminum alloy. The components of the aluminum alloys of the intermediate layer and the bearing layer are identical except for an additional soft phase portion in the bearing layer. Said soft phase portion may include lead, tin and/or bismuth. The invention also relies to a method for producing the inventive antifriction composite.Type: GrantFiled: May 22, 2006Date of Patent: November 8, 2011Assignee: Federal-Mogul Wiesbaden GmbHInventor: Peter Neuhaus
-
Patent number: 7942987Abstract: A digital manufacturing system comprises a build chamber, a build platform disposed within the build chamber, at least one extrusion line configured to heat a metal-based alloy up to a temperature between solidus and liquidus temperatures of the metal-based alloy, a deposition head disposed within the build chamber and configured to deposit the heated metal-based alloy onto the build platform in a predetermined pattern, an umbilical having a first end located outside of the build chamber and a second end connected to the deposition head, and at least one gantry assembly configured to cause relative motion between the build platform and the deposition head within the build chamber, where the at least one gantry assembly comprises a motor disposed outside of the build chamber.Type: GrantFiled: June 24, 2008Date of Patent: May 17, 2011Assignee: Stratasys, Inc.Inventors: S. Scott Crump, J. Samuel Batchelder, Timothy Sampson, Robert L. Zinniel, John Barnett
-
Publication number: 20110036614Abstract: An aluminum electric wire includes an annealing conductor that is made up of elemental wires made of an aluminum alloy containing 0.90-1.20 mass % Fe, 0.10-0.25 mass % Mg, 0.01-0.05 mass % Ti, 0.0005-0.0025 mass % B, and the balance being Al and has a tensile strength of 110 MPa or more, a breaking elongation of 15% or more, and an electric conductivity of 58% IACS or more, and an insulating material covering the conductor. The wire is produced by casting an aluminum alloy prepared by rapidly solidifying a molten aluminum alloy having the above composition, producing the wires by subjecting the alloy to plasticity processing, producing the conductor by bunching the wires, subjecting the wires or the conductor to annealing at 250° C. or higher, and then covering the conductor with the insulator.Type: ApplicationFiled: October 23, 2008Publication date: February 17, 2011Applicants: AUTONETWORKS TECHNOLOGIES, LTD., SUMITOMO WIRING SYSTEMS, LTD., SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO ELECTRIC TOYAMA CO., LTD.Inventors: Yasuyuki Otsuka, Masanobu Yoshimura, Koutarou Maeda, Jun Yoshimoto, Masashi Kimura, Taichirou Nishikawa, Misato Kusakari, Shinichi Kitamura, Hiroaki Takai
-
Publication number: 20100170996Abstract: An aluminum alloy comprises aluminum, magnesium, scandium, and an enhancing system. The magnesium is from about 0.5 percent to about 10.0 percent by weight based on the aluminum alloy. The scandium is from about 0.05 percent to about 10.0 percent by weight based on the aluminum alloy. The enhancing system is from about 0.05 percent to about 1.5 percent by weight based on the aluminum alloy.Type: ApplicationFiled: January 7, 2009Publication date: July 8, 2010Inventors: Krishnan K. Sankaran, Kevin T. Slattery
-
Publication number: 20090314391Abstract: A digital manufacturing system comprises a build chamber, a build platform disposed within the build chamber, at least one extrusion line configured to heat a metal-based alloy up to a temperature between solidus and liquidus temperatures of the metal-based alloy, a deposition head disposed within the build chamber and configured to deposit the heated metal-based alloy onto the build platform in a predetermined pattern, an umbilical having a first end located outside of the build chamber and a second end connected to the deposition head, and at least one gantry assembly configured to cause relative motion between the build platform and the deposition head within the build chamber, where the at least one gantry assembly comprises a motor disposed outside of the build chamber.Type: ApplicationFiled: June 24, 2008Publication date: December 24, 2009Applicant: Stratasys, Inc.Inventors: S. Scott Crump, J. Samuel Batchelder, Timothy Sampson, Robert L. Zinniel, John Barnett
-
Publication number: 20090308500Abstract: An aluminum alloy fin material for a heat exchanger having suitable strength before brazing enabling easy fin formation, having high strength after brazing, having a high thermal conductivity (electrical conductivity) after brazing, and having superior sag resistance, erosion resistance, self corrosion prevention, and sacrificial anode effect, a method of production of the same, and a method of production of a heat exchanger using the fin material are provided, that is, an aluminum alloy fin material having a chemical composition of Si: 0.7 to 1.4 wt %, Fe: 0.5 to 1.4 wt %, Mn: 0.7 to 1.4 wt %, and Zn: 0.5 to 2.5 wt %, Mg as an impurity limited to 0.Type: ApplicationFiled: June 8, 2007Publication date: December 17, 2009Inventors: Hideki Suzuki, Sasaki Tomohiro, Masae Nagasawa, Nobuki Takahashi
-
Patent number: 7608345Abstract: A method of producing an aluminium alloy brazing sheet for the manufacturing of light brazed assemblies, wherein said brazing sheet has good formability, combined with a low susceptibility to core penetration in the end annealed as-produced condition after stretching, forming and/or shaping and brazing are disclosed. Assemblies made according to the method are also disclosed.Type: GrantFiled: October 11, 2005Date of Patent: October 27, 2009Assignee: Aleris Aluminum Koblenz GmbHInventors: Achim Bürger, Scott W. Haller, Guy Laliberté
-
Publication number: 20090250476Abstract: A fuel tank for a vehicle is made of a cast aluminum alloy and has good ductility and toughness. The cast aluminum alloy is subjected to a heat treatment at a temperature of no less than about 350° C. and no more than about 390° C. to possess a Vickers hardness of about 70 HV or less.Type: ApplicationFiled: November 21, 2006Publication date: October 8, 2009Applicant: YAMAHA HATSUDOKI KABUSHIKI KAISHAInventors: Toru Kitsunai, Atsushi Hirose
-
Publication number: 20090180920Abstract: A copper-free wrought aluminum alloy product and method for producing the same are provided. In one example, the alloy has a composition of about 0.01 to about 1.5 weight percent silver; about 1.0 to about 3.0 weight percent magnesium; about 4.0 to about 10.0 weight percent zinc; about 0.05 to about 0.25 weight percent zirconium; a maximum of 0.15 weight percent iron; a maximum of 0.15 weight percent silicon; and a remainder including aluminum, incidental elements, and impurities. In one example, the alloy may be used to manufacture structural elements for aircraft.Type: ApplicationFiled: January 14, 2008Publication date: July 16, 2009Inventors: Burke L. Reichlinger, Brien J. McElroy, Iulian Gheorghe
-
Patent number: 7520044Abstract: An aerosol can fabrication process comprises the following steps: formation of slugs from an aluminium-based alloy having the following composition, in weight percentage: Si 0.35-0.45 Mg 0.25-0.40 Mn 0.05-0.15 Fe 0.12-0.20 Total of minor elements ?0.15% Al Balance. thermal treatment of the slugs, forced cooling of the slugs, cold impact extrusion of a slug so as to form a can, applying a lacquer inside the can.Type: GrantFiled: July 15, 2005Date of Patent: April 21, 2009Assignee: Boxal FranceInventors: Jean-Maurice Bulliard, Guenter Hoellrigl, Cedric Fanton
-
Patent number: 7514155Abstract: Disclosed is a high strength aluminium alloy brazing sheet, including an Al—Cu core layer and at least one clad layer, the core layer having the following composition (in weight percent): Cu: 1.2-4.0, Mn: 0.06-1.5, Mg: 0.06-1.5, Si: up to 0.5, Zn: ?0.4, Zr: ?0.25, Fe: ?0.5, Ti: ?0.25, Cr: ?0.25; V?0.25; the balance substantially aluminium and impurities, the clad layer including an Al—Si based filler alloy and being applied on at least one side of the core layer. Also disclosed is a brazed assembly including the brazing sheet and the use of the brazing sheet for a brazing application such as a heat exchanger.Type: GrantFiled: July 15, 2004Date of Patent: April 7, 2009Assignee: Aleris Aluminum Koblenz GmbHInventors: Rinze Benedictus, Achim Bürger, William Sinclair Miller, Alfred Johann Peter Haszler
-
Publication number: 20090007994Abstract: An aluminum alloy sheet having excellent press formability and stress corrosion cracking resistance, comprises 3.3 to 3.6 percent by weight of Mg and 0.1 to 0.2 percent by weight of Mn, furthermore, 0.05 to 0.3 percent by weight of Fe and 0.05 to 0.15 percent by weight of Si, and the remainder comprises Al and incidental impurities, wherein the sizes of intermetallic compounds is 5 ?m or less, the recrystallized grain size is 15 ?m or less in the region at a depth of 10 to 30 ?m below the sheet surface, and the surface roughness is Ra 0.2 to 0.7 ?m.Type: ApplicationFiled: July 30, 2004Publication date: January 8, 2009Applicants: NOVELIS INC., NIPPON LIGHT METAL CO., LTD., HONDA MOTOR CO., LTD.Inventors: Pizhi Zhao, Toshiya Anami, Ichiro Okamoto, Hitoshi Kazama, Kunihiro Yasunaga, Noboru Hayashi, Kevin Gatenby, Mark Gallerneault, Simon Barker
-
Publication number: 20080318081Abstract: The invention relates to a malleable, high mechanical strength aluminum alloy of the AlMgSi type which can be anodized in a decorative manner, to a semifinished product produced from said alloy, in the shape of strips, sheets or extruded profiles, and to a structural component produced from the above semifinished products, especially a reshaped component that has been anodized in a decorative manner. The invention also relates to a method for producing an aluminum alloy component of the above type. Said aluminum alloy has good malleability, achieved by weight percentages of strontium in the alloy and defined weight ratios of silicon to magnesium and iron to strontium.Type: ApplicationFiled: April 30, 2005Publication date: December 25, 2008Inventor: Reiner Steins
-
Patent number: 7422241Abstract: A girder is described for a vehicle chassis made of at least two sheet metal profiles (4, 5) composed along their longitudinal edges into a circumferentially enclosed hollow profile (1), which hollow profile comprises at least two longitudinal sections (2, 3) which are both materially joined by way of a joining seam (10).Type: GrantFiled: June 22, 2004Date of Patent: September 9, 2008Assignee: voestalpine STAHL GmbHInventors: Christian Schmaranzer, Alois Leitner
-
Patent number: 7374827Abstract: A metallurgical product consists essentially of a core aluminum alloy, purposefully tailored through chemistry and processing route to resist recrystallization during the brazing cycle to intentionally exploit the higher strengths immediately after brazing of a deformed and recovered microstructure, the core aluminum alloy being bonded on one side to an aluminum alloy interliner designed to be resistant to localized erosion, which, in turn, is bonded to a 4xxx calling alloy.Type: GrantFiled: October 12, 2005Date of Patent: May 20, 2008Assignee: Alcoa Inc.Inventor: Raymond J. Kilmer
-
Patent number: 7226669Abstract: The present invention a high strength aluminium alloy brazing sheet, comprising an Al—Zn core layer and at least one clad layer, the core layer including the following composition (in weight percent): Zn 1.2 to 5.5 Mg 0.8 to 3.0 Mn 0.1 to 1.0 Cu <0.2 Si ?<0.35 Fe <0.5 optionally one or more of: Zr <0.3 Cr <0.3 V <0.3 Ti <0.2 Hf <0.3 Sc <0.5, the balance aluminium and incidental elements and impurities. The clad layer includes an Al—Si based filler alloy and is applied on at least one side of the core layer. The invention relates furthermore to a brazed assembly including such brazing sheet, to the use of such brazing sheet and to method for producing an aluminium alloy brazing sheet.Type: GrantFiled: August 26, 2004Date of Patent: June 5, 2007Assignee: Aleris Aluminum Koblenz GmbHInventors: Rinze Benedictus, Achim Burger, Alfred Johann Peter Haszler
-
Patent number: 7125612Abstract: A method of continuous casting non-ferrous alloys which includes delivering molten non-ferrous alloy to a casting apparatus. The casting apparatus rapidly cools at least a portion of the non-ferrous alloy at a rate of at least about 100° C. thereby solidifying an outer layer of the non-ferrous alloy surrounding an inner layer of a molten component and a solid component of dendrites. The dendrites are altered to yield cast product exhibiting good resistance to cracking.Type: GrantFiled: June 13, 2003Date of Patent: October 24, 2006Assignee: Alcoa Inc.Inventor: Ali Ünal
-
Patent number: 6960274Abstract: An apparatus and method of manufacturing a wire mesh laminate includes wrapping a central core with multiple layers of mesh screen and a barrier layer having a higher melting point than the mesh screen to form a spool assembly. The spool assembly is then surrounded by an outer cover and is heated to sinter or fuse together the layers of mesh screen.Type: GrantFiled: August 5, 2002Date of Patent: November 1, 2005Assignee: Weatherford/Lamb, Inc.Inventors: John Bewlay, Thomas Steinke, Michael Appel
-
Patent number: 6936118Abstract: Precursor-based methods for the production of metal-matrix composite (MMC) coatings on steel and aluminum substrates for improved wear, corrosion and oxidation resistance have been made. Wire and surface precursors are deposited on the substrate by controlled thermal processing using plasma-arc, laser and high-density infrared radiation. The temperature distribution during the formation for coating is controlled by a real tine adaptive control method. The wire precursors produced by continuous pressure infiltration of SiC or mullite fiber with aluminum were used. Steel substrates double-layer plated with binary metals including nickel and aluminum are also thermal-processed to in-situ produce compound such as nickel aluminide coatings.Type: GrantFiled: August 7, 2002Date of Patent: August 30, 2005Assignees: Northeastern University, Trustees of Tufts CollegeInventors: Teiichi Ando, Charalabos Doumanidis
-
Patent number: 6932879Abstract: An improved method of weldbonding utilizing inclusion bodies, placed directly between materials to be bonded or included in a weldbonding adhesive. The inclusion bodies maintain a gap between the materials to be welded which provides a gas releasing egress route to disperse the gas and gaseous byproducts produced during welding. This egress route substantially prevents the gases and gaseous byproducts from being expelled through the weld pool and the resultant degradation of the quality of the weld pool, particularly with coated materials, partial penetration welds, and such materials as 6000 series aluminum. The method further comprises an optional step of including a crack-reducing additive, applied either directly to the materials to be welded or included in the adhesive. A laser weldbonding embodiment may use a plurality of phased heat cycles to reduce weld imperfections, and enhance the effects of the adhesive and optional crack-reducing additive.Type: GrantFiled: August 13, 2002Date of Patent: August 23, 2005Assignee: Edison Welding InstituteInventors: Kevin J. Ely, Timothy M. Frech, George W. Ritter
-
Patent number: 6923876Abstract: The invention relates to a process to manufacture a clad strip, preferably <1.5 mm thick, intended for the manufacture of brazed heat exchangers, comprising: casting a plate of core alloy comprising (% by weight): Si<0.8, Fe<0.8, Cu 0.2-0.9, Mn 0.7-1.5, Mg<0.4, Zn<0.2, Ti<0.1, other elements <0.05 each and <0.15 in total, the remainder aluminum, homogenizing the plate between 550 and 630° C. for at least one hour, cladding one or two sides of the plate with a brazing aluminum alloy, preferentially containing 5 to 13% silicon, hot rolling followed by cold rolling of the plate to a thickness close to a final desired thickness, recrystallization annealing of the strip between 300 and 4000 C., strain hardening of the annealed strip to obtain a permanent deformation between 2 and 10% and to obtain the desired final thickness.Type: GrantFiled: November 12, 2002Date of Patent: August 2, 2005Assignee: Pechiney RhenaluInventors: Jean-Claude Kucza, Sylvain Henry, Michel Mediouni, David Ebersolt, Nathalie Remond
-
Patent number: 6902828Abstract: A bright composite sheet product including a roll cast core and a clad material bonded to the core. The core is an aluminum alloy of the AA series 1XXX, 3XXX, 5XXX, or 8XXX, and the clad material contains at least 99.5 wt. % aluminum. The composite sheet products is particularly suited for use in lighting fixtures.Type: GrantFiled: April 9, 2001Date of Patent: June 7, 2005Assignee: Alcoa Inc.Inventors: Jose L. Gazapo, Catalina Fernandez Rivera, Emilio Sanchez Suarez
-
Patent number: 6764559Abstract: Disclosed is a method for producing aluminum vehicular frame members such as frame members from molten aluminum alloy using a continuous caster to cast the alloy into a slab. The method comprises providing a molten aluminum alloy consisting essentially of 2.7 to 3.6 wt. % Mg, 0.1 to 0.4 wt. % Mn, 0.02 to 0.2 wt. % Si, 0.05 to 0.30 wt. % Fe, 0.1 wt. % max. Cu, 0.1 wt. % max. Cr, 0.2 wt. % max. Zr, the remainder aluminum, incidental elements and impurities and providing a continuous caster such as a belt caster for continuously casting the molten aluminum alloy. The molten aluminum alloy is cast into a slab which is rolled into a sheet product and then annealed. The sheet has an improved distribution of intermetallic particles (Al—Fe—Mn) and improved formability. Thereafter, the sheet product is formed into a tube having a seam which is welded to provide a seam welded tube. The seam welded tube is placed in a forming die and hydroformed to form the frame member.Type: GrantFiled: November 15, 2002Date of Patent: July 20, 2004Assignee: Commonwealth Industries, Inc.Inventors: Zhong Li, Paul Platek
-
Patent number: 6764558Abstract: The invention relates to a process to manufacture a clad strip, <1.5 mm thick, intended for the manufacture of brazed heat exchangers, comprising: casting of a plate made of core alloy composed as follows (o by weight): Si<0.8 Fe<0.8 Cu: 0.2-0.9 Mn: 0.7-1.5 Mg<0.4 Zn<0.2 Ti<0.1 other elements <0.05 each and <0.15 in total, the remainder aluminum, homogenization of said plate between 550 and 630° C. for at least one hour, cladding on one or two sides of said blank of a brazing aluminum alloy, preferentially containing 5 to 13% silicon, hot rolling followed by cold rolling of the plated blank to a thickness close to the final thickness, recrystallization annealing of the strip between 300 and 4000C., strain hardening of the annealed strip to obtain a permanent deformation between 2 and 10% and the final thickness.Type: GrantFiled: November 15, 2001Date of Patent: July 20, 2004Assignee: Pechiney RhenaluInventors: Jean-Claude Kucza, Sylvain Henry, Michel Mediouni, David Ebersolt, Nathalie Remond
-
Publication number: 20040094245Abstract: Disclosed is a method for producing aluminum vehicular frame members such as frame members from molten aluminum alloy using a continuous caster to cast the alloy into a slab. The method comprises providing a molten aluminum alloy consisting essentially of 2.7 to 3.6 wt. % Mg, 0.1 to 0.4 wt. % Mn, 0.02 to 0.2 wt. % Si, 0.05 to 0.30 wt. % Fe, 0.1 wt. % max. Cu, 0.1 wt. % max. Cr, 0.2 wt. % max. Zr, the remainder aluminum, incidental elements and impurities and providing a continuous caster such as a belt caster for continuously casting the molten aluminum alloy. The molten aluminum alloy is cast into a slab which is rolled into a sheet product and then annealed. The sheet has an improved distribution of intermetallic particles (Al—Fe—Mn) and improved formability. Thereafter, the sheet product is formed into a tube having a seam which is welded to provide a seam welded tube. The seam welded tube is placed in a forming die and hydroformed to form the frame member.Type: ApplicationFiled: November 15, 2002Publication date: May 20, 2004Inventors: Zhong LI, Paul Platek
-
Patent number: 6696175Abstract: The present invention provides aluminum alloys and layers formed in aluminum alloys as well as methods for their manufacture. Aluminum alloys of the present invention are provided with at least one discrete layer of uncrystallized grains formed therein. Alloys of the present invention can be formed, for example, by a process that includes a final partial anneal that permits softening of the material to essentially an O-temper condition. Processes of the present invention recrystallized substantially the entire material by leave a discrete layer of preferably less than 50 microns of the material unrecrystallized. In preferred embodiments, the aluminum material is a core material that is clad on one or both sides and the discrete unrecrystallized layer forms at the boundary between the clad and the core.Type: GrantFiled: January 16, 2003Date of Patent: February 24, 2004Assignee: Pechiney Rolled ProductsInventors: Scott L. Palmer, Zayna Connor, H. Scott Goodrich