Mechanical Memory (e.g., Shape Memory, Heat-recoverable, Etc.) Patents (Class 148/563)
  • Patent number: 5728240
    Abstract: A method of adjusting position of a member including an adjustable portion made of material having shape memory effect, comprising the steps of: (a) heat-treating for shape memory the member in a first shape such that the first shape is memorized in the adjustable portion; (b) plastically deforming the adjustable portion to a second shape after cooling the adjustable portion to less than a shape recovery temperature; and (c) locally heating the adjustable portion to more than the shape recovery temperature so as to subject the adjustable portion to local shape recovery.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: March 17, 1998
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Tatsushi Yamamoto, Tomoyuki Sagara, Tetsurou Muramatsu, Toshiyuki Tanaka, Renzaburou Miki
  • Patent number: 5669991
    Abstract: A method of electrical discharge machining at least one shaped hole in a metallic article using a shape memory alloy electrode is disclosed. The method comprises the steps of processing at least one shape memory alloy wire electrode to retain a trained shape; loading the electrode in an electrical discharge machining device; and electrical discharge machining at least one shaped hole in the article, whereby the hole approximates the trained shape of the electrode.
    Type: Grant
    Filed: March 1, 1995
    Date of Patent: September 23, 1997
    Assignee: United Technologies Corporation
    Inventor: James DeFilippo
  • Patent number: 5665050
    Abstract: A medical endoscope has a superelastic-alloy force-transmitting element having at least one recess in its surface at a coupling site and being positively connected to a load-receiving component, the recess being formed by sublimation removal of material.
    Type: Grant
    Filed: March 22, 1996
    Date of Patent: September 9, 1997
    Assignee: Olympus Winter & Ibe GmbH
    Inventor: Rainer Benecke
  • Patent number: 5641364
    Abstract: A method of manufacturing a high-temperature shape memory alloy includes the steps of cold-working a high-temperature shape memory alloy, in which a reverse martensite transformation start temperature (As) in a first heating after cold working reaches 350.degree. C. or above. Thereafter, the cold-worked alloy undergoes a first heat treatment for a period of time within the incubation time required for recrystallization or less, and at a temperature higher than a reverse martensite transformation finish temperature (Af). Finally, the resultant alloy is annealed with a second heat treatment, at a temperature which is not less than the plastic strain recovery temperature and not more than the recrystallization temperature. Specifically, the first heat treatment is performed for a period of three minutes or less at a temperature which exceeds 500.degree. C. and which is lower than the melting point of the alloy. The composition of the high-temperature shape memory alloy is Ti.sub.50 Ni.sub.50-x Pd.sub.
    Type: Grant
    Filed: October 27, 1995
    Date of Patent: June 24, 1997
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Dmitrii Victorovich Golberg, Kazuhiro Otsuka, Tatsuhiko Ueki, Hiroshi Horikawa, Kengo Mitose
  • Patent number: 5624508
    Abstract: A process is provided for the manufacture of a two-way shape memory alloy and device. The process of the invention allows a reversible adjustment of the characteristic transformation temperatures, as well as the direction of the two-way shape memory effect, at the final stage of manufacture.
    Type: Grant
    Filed: May 2, 1995
    Date of Patent: April 29, 1997
    Inventors: Josef Flomenblit, Nathaly Budigina
  • Patent number: 5578149
    Abstract: The present invention is directed to an expandable stent for use in blood vessels. The length of the stent after expansion is substantially the same as the stent length before expansion. The stent is annealed at high temperatures to permit stent deformation at relatively low pressures to conform to the blood vessel shape and diameter.
    Type: Grant
    Filed: May 31, 1995
    Date of Patent: November 26, 1996
    Assignee: Global Therapeutics, Inc.
    Inventors: Ivan De Scheerder, Joseph B. Horn
  • Patent number: 5567251
    Abstract: A reinforcement-containing metal-matrix composite material is formed by dispersing pieces of reinforcement material throughout a melt of a bulk-solidifying amorphous metal and solidifying the mixture at a sufficiently high rate that the solid metal matrix is amorphous. Dispersing is typically accomplished either by melting the metal and mixing the pieces of reinforcement material into the melt, or by providing a mass of pieces of the reinforcement material and infiltration of the molten amorphous metal into the mass. The metal preferably has a composition of about that of a eutectic composition, and most preferably has a composition, in atomic percent, of from about 45 to about 67 percent total of zirconium plus titanium, from about 10 to about 35 percent beryllium, and from about 10 to about 38 percent total of copper plus nickel.
    Type: Grant
    Filed: April 6, 1995
    Date of Patent: October 22, 1996
    Assignee: Amorphous Alloys Corp.
    Inventors: Atakan Peker, William L. Johnson, Robert Schafer, David M. Scruggs
  • Patent number: 5503691
    Abstract: A method of enhancing the appearance of a polished surface of an artifact is provided in which the artifact is formed from a non-ferrous alloy, in particular, but not exclusively, a precious metal alloy, chosen to exhibit a martensitic and a parent phase structure. The surface, or relevant part thereof, is polished in one of the phases, usually the parent phase, followed by heat treatment to effect a phase transformation, generally to the martensitic phase. This phase change causes a visible surface effect to the polished surface which may be described as a spangle effect.
    Type: Grant
    Filed: December 1, 1994
    Date of Patent: April 2, 1996
    Assignee: Mintek
    Inventors: Ira M. Wolff, Michael B. Cortie
  • Patent number: 5482574
    Abstract: A shape-memory alloy material is liquefied by heating for casting into sts that are coated with an adherent material and collected into a preshaped porous mass so as to assume a preshaped configuration and be restored thereto under selected temperature conditions. When installed into a composite structure, the preshaped porous mass endows the composite structure with the shape-memory properties of the strips.
    Type: Grant
    Filed: October 4, 1994
    Date of Patent: January 9, 1996
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: David Goldstein
  • Patent number: 5419788
    Abstract: The present invention relates to a method for increasing the useful life of a shape memory alloy (SMA) actuator, wherein the SMA element contracts on heating and elongates on cooling under an applied stress and that property is used as an actuating technique. More specifically, the present invention relates to the cooling aspect of the cycle and maintaining a martensite strain on the actuator SMA element at less than about 3% by limiting the upper stress on the element. In the most preferred embodiment, the element is a ribbon actuator prepared from a nickel-titanium SMA alloy.
    Type: Grant
    Filed: December 10, 1993
    Date of Patent: May 30, 1995
    Assignee: Johnson Service Company
    Inventors: Paul E. Thoma, Ming-Yuan Kao, Dwight M. Schmitz
  • Patent number: 5385396
    Abstract: A method of assembling elements into a valve block is described, especially for use with slip-controlled brake systems, in which a sealing ball, valve covers or valve seats are inserted into the valve block to be sealed without using force fitting, swaging or other mechanical working of the parts, to avoid contaminating abrasive particles generated by these processes. The elements are inserted into openings in the valve block housing with a clearance fit, and heated to a temperature higher than the austenite starting temperature causing a memory shape to be restored, which provides a sealing fixation of the elements in respective openings in the valve block.
    Type: Grant
    Filed: January 3, 1994
    Date of Patent: January 31, 1995
    Inventors: Erhard Beck, Albrecht Otto
  • Patent number: 5368661
    Abstract: Composite parts of Ni-Ti alloys joined to a different metal have a melt forged structure obtained through the reactive fusion of both metals, initiated by the fusion of at least one metal bordering on the joint interface and the application of pressure; a hot forged structure of Ni-Ti alloy obtained through softening the alloy at high temperature and applying pressure on the Ni-Ti alloy side of the joint; and a hot forged structure of the different metal obtained by softening the metal at high temperature and applying pressure on the different metal side of the joint.
    Type: Grant
    Filed: June 15, 1993
    Date of Patent: November 29, 1994
    Assignees: The Furukawa Electric Co., Ltd., Masunaga Menlo Park Co., Ltd.
    Inventors: Masayuki Nakamura, Kaisuke Shiroyama, Satoru Masunaga, Kazuo Murata
  • Patent number: 5362141
    Abstract: A method of assembling elements into a valve block is described, especially for use with slip-controlled brake systems, a sealing ball, valve covers or valve seats are inserted into the valve block to be sealed without using force fitting swaging or other mechanical working of the parts, to avoid contaminating abrasive particles generated by those processors. The elements are inserted into openings in the valve block housing with a clearance fit, and heated to a temperature higher than the austenite starting temperature causing a memory shape to be restored, which provides a sealing fixation of the elements in respective openings in the valve block.
    Type: Grant
    Filed: December 11, 1991
    Date of Patent: November 8, 1994
    Assignee: Alfred Teves GmbH
    Inventors: Erhard Beck, Albrecht Otto
  • Patent number: 5265919
    Abstract: In order to provide a pipe joint of stainless steel including more than 10% of Cr which joint has excellent shape memory effect, the stainless steel comprises up to 0.10% of C, 3.0 to 6.0% of Si, 6.0 to 25.0% of Mn, up to 7.0% of Ni, more than 10.0 to 17.0% of Cr, 0.02 to 0.30% of N, 2.0 to 10.0% of Co, and optionally one or more selected from 0.05 to 0.8% of Nb, 0.05 to 0.8% of V, 0.05 to 0.8% of Zr, 0.05 to 0.8% of Ti, up to 2.0% of Mo and up to 2.0% of Cu and the alloying components are balanced so that no .delta.-ferritic phase may substantially appear in the annealed condition. Since the joint is treated so that it has such a shape memory effect that it will recover the memorized original shape with a smaller diameter when heated to an appropriate temperature, it can fasten a pipe or pipes merely by heating.
    Type: Grant
    Filed: December 24, 1991
    Date of Patent: November 30, 1993
    Assignee: Nisshin Steel Co., Ltd.
    Inventors: Toshihiko Takemoto, Masayuki Kinugasa, Teruo Tanaka, Takashi Igawa
  • Patent number: 5203931
    Abstract: A process for preparing an indium-thallium alloy which exhibits shape memory transformation at a temperature greater than that temperature at which shape memory transformation would occur for a thermally prepared alloy of the same composition. The process includes providing an article for use as a cathode, providing an electrolyte which comprises indium and thallium ions, and electrodepositing an indium-thallium alloy having between about 21 and about 35 atomic percent thallium onto the article. A process for preparing an article constructed of an electrodeposited indium-thallium alloy which exhibits shape memory effect. An electrodeposited indium-based shape memory alloy.
    Type: Grant
    Filed: September 20, 1991
    Date of Patent: April 20, 1993
    Assignee: University of Missouri
    Inventor: Thomas J. O'Keefe
  • Patent number: 5198041
    Abstract: A shape memory stainless steel containing more than 10% by weight of Cr excellent in resistance to stress corrosion cracking and having sufficient function as a shape memory alloy, which comprises, by weight, up to 0.10% of C, 3.0 to 6.0% of Si, 6.0 to 25.0% of Mn, up to 7.0% of Ni, more than 10.0% and not more than 17.0% of Cr, 0.02 to 0.3% of N, 2.0 to 10.0% of Co and more than 0.2% and not more than 3.5% of Cu, and at least one selected from up to 2.0% of Mo, 0.05 to 0.8% of Nb, 0.05 to 0.8% of V, 0.05 to 0.8% of Zr, 0.05 or 0.8% of Ti, the balance being Fe and unavoidable impurities, the alloying components being adjusted so that a D value is not less than-26.0, wherein the D value is defined by the following equation:D=Ni+0.30.times.Mn+56.8.times.C+19.0.times.N+0.73.times.Co+Cu -1.85.times.[Cr+1.6.times.Si+Mo+1.5.times.(Nb+V+Zr+Ti)].
    Type: Grant
    Filed: February 25, 1992
    Date of Patent: March 30, 1993
    Assignee: Nisshin Steel Co., Ltd.
    Inventors: Toshihiko Takemoto, Masayuki Kinugasa, Teruo Tanaka, Takashi Igawa
  • Patent number: 5171383
    Abstract: A catheter guide wire is provided for guiding a catheter into a body cavity such as a blood vessel. The base material constituting the wire is made of an elastic alloy wire and subjected to a heat treatment such that its flexibility is sequentially increased from its proximal to distal end portions. A thermoplastic resin or/and a coil spring can be applied to at least the distal end portion of the wire base material. A method of manufacturing the catheter guide wire is also provided. The method is characterized in that the leading end side of the base material is divided into a plurality of areas and subjected to a heat treatment by changing the heat treatment temperature and the time conditions in units of the areas so that the flexibility of the base material is sequentially increased from the proximal to distal end portions of the leading end side.
    Type: Grant
    Filed: September 16, 1991
    Date of Patent: December 15, 1992
    Assignee: Terumo Kabushiki Kaisha
    Inventors: Kyuta Sagae, Yoshiaki Sugiyama