Tempering Patents (Class 148/663)
  • Patent number: 9593916
    Abstract: An aspect of the present disclosure is directed to low-alloy steels exhibiting high hardness and an advantageous level of multi-hit ballistic resistance with low or no crack propagation imparting a level of ballistic performance suitable for military armor applications. Various embodiments of the steels according to the present disclosure have hardness in excess of 550 BHN and demonstrate a high level of ballistic penetration resistance relative to conventional military specifications.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: March 14, 2017
    Assignee: ATI Properties LLC
    Inventors: Ronald E. Bailey, Thomas R. Parayil, Glenn J. Swiatek
  • Patent number: 9034121
    Abstract: A low alloy steel ingot contains from 0.15 to 0.30% of C, from 0.03 to 0.2% of Si, from 0.5 to 2.0% of Mn, from 0.1 to 1.3% of Ni, from 1.5 to 3.5% of Cr, from 0.1 to 1.0% of Mo, and more than 0.15 to 0.35% of V, and optionally Ni, with a balance being Fe and unavoidable impurities. Performing quality heat treatment including a quenching step and a tempering step to the low alloy steel ingot to obtain a material, which has a grain size number of from 3 to 7 and is free from pro-eutectoid ferrite in a metallographic structure thereof, and which has a tensile strength of from 760 to 860 MPa and a fracture appearance transition temperature of not higher than 40° C.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: May 19, 2015
    Assignees: THE JAPAN STEEL WORKS,LTD., KABUSHIKI KAISHA TOSHIBA
    Inventors: Satoru Ohsaki, Kazuhiro Miki, Tsukasa Azuma, Koji Kajikawa, Shigeru Suzuki, Masayuki Yamada, Itaru Murakami, Kenichi Okuno, Liang Yan, Reki Takaku, Akihiro Taniguchi, Tetsuya Yamanaka, Makoto Takahashi, Kenichi Imai, Osamu Watanabe, Joji Kaneko
  • Publication number: 20150114525
    Abstract: The invention relates to a method that has been developed to obtain good toughness and homogeneous properties through heavy sections in tool steels or likely highly alloyed steels. The microstructure attained is mostly bainitic. The method is especially good for hot work tool steels in applications demanding heavy sections and very high toughness. The method consists on the application of a low temperature bainitic transformation to tool steels presenting a low enough martensite transformation temperature (Ms). Additionally or alternatively cementite is replaced from the bainite by other finer carbides, mainly mixed carbides containing elements with stronger affinity for carbon than iron. The method is especially simple if applied to steels with high contents of Si or Al (>1.3% and >0.4% respectively) where cementite growth is impaired. The method works also well for low cost plastic injection moulding and structural steels. Even some higher alloyed tool steels can benefit from, the present method.
    Type: Application
    Filed: May 7, 2013
    Publication date: April 30, 2015
    Inventor: Isaac Valls Anglés
  • Publication number: 20150101713
    Abstract: A method for forming and treating a steel article of a high strength and ductile alloy. The method includes the steps of providing a starting steel composition for the steel article, preheating the composition, heating the starting material to a peak temperature range in less than forty seconds, holding the heated steel composition at the peak temperature range for between two and sixty seconds, quenching the heated steel composition from the peak temperature range to below 177° C. (350° F.) at a temperature rate reduction of 200 to 3000° C./sec (360 and 5400° F./sec), removing residual quench media from the surface of the quenched steel composition, tempering the quenched steel composition at a temperature of 100 to 704° C. (212 to 1300° F.); and air cooling the tempered steel composition to less than 100° C. (212° F.) to form a steel having desired mechanical properties.
    Type: Application
    Filed: August 15, 2014
    Publication date: April 16, 2015
    Applicant: BUFFALO ARMORY LLC
    Inventors: John BATISTE, Richard CLARE, JR., Jack HEINZ, Brent NICHOLSON
  • Patent number: 8999078
    Abstract: A forging heat resistant steel of an embodiment contains in percent by mass C: 0.05-0.2, Si: 0.01-0.1, Mn: 0.01-0.15, Ni: 0.05-1, Cr: 8 or more and less than 10, Mo: 0.05-1, V: 0.05-0.3, Co: 1-5, W: 1-2.2, N: 0.01 or more and less than 0.015, Nb: 0.01-0.15, B: 0.003-0.03, and a remainder comprising Fe and unavoidable impurities.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: April 7, 2015
    Assignees: Kabushiki Kaisha Toshiba, The Japan Steel Works, Ltd.
    Inventors: Masayuki Yamada, Reki Takaku, Haruki Ohnishi, Kenichi Okuno, Kenichi Imai, Kazuhiro Miki, Tsukasa Azuma, Satoru Ohsaki
  • Publication number: 20150053315
    Abstract: Provided are: a boron-added high strength steel for bolt excellent in delayed fracture resistance even having a tensile strength of 1100 MPa or more without addition of large amounts of expensive alloy elements such as Cr and Mo: and a high strength bolt made from the boron-added high strength steel for bolt. The high strength steel for bolt contains C of 0.23% to less than 0.40%, Si of 0.23% to 1.50%, Mn of 0.30% to 1.45%, P of 0.03% or less (excluding 0%), S of 0.03% or less (excluding 0%), Cr of 0.05% to 1.5%, V of 0.02% to 0.30%, Ti of 0.02% to 0.1%, B of 0.0003% to 0.0050%, Al of 0.01% to 0.10%, and N of 0.002% to 0.010%, with the remainder being iron and inevitable impurities. The steel has a ratio ([Si]/[C]) of the Si content [Si] to the C content [C] of 1.0 or more and has a ferrite-pearlite mixed microstructure.
    Type: Application
    Filed: February 5, 2013
    Publication date: February 26, 2015
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Yosuke Matsumoto, Atsushi Inada, Masamichi Chiba
  • Publication number: 20150041030
    Abstract: A steel has a chemical composition consisting of, by mass percent, C: 0.15-0.65%, Si: 0.05-0.5%, Mn: 0.1-1.5%, Cr: 0.2-1.5%, Mo: 0.1-2.5%, Ti: 0.005-0.50%, Al: 0.001-0.50%, and optionally at least one element selected from Nb: ?0.4%, V: ?0.5%, and B: ?0.01%, Ca: ?0.005° A, Mg: ?0.005%, and REM: ?0.005%, and the balance of Fe and impurities, wherein Ni, P, S, N and O as impurities are Ni: ?0.1%, P: ?0.04%, S: ?0.01%, N: ?0.01%, and O: ?0.01%. The steel is hot-worked into a shape and then sequentially subjected to heating the steel to a temperature exceeding the Ac1 transformation point and lower than the Ac3 transformation point and cooling. Then, a step of reheating the steel to a temperature not lower than the Ac3 transformation point and quenching the steel by rapid cooling, and a step of tempering the steel at a temperature not higher than the Ac1 transformation point are performed.
    Type: Application
    Filed: February 26, 2013
    Publication date: February 12, 2015
    Inventors: Keiichi Kondo, Yuji Arai
  • Patent number: 8845831
    Abstract: There is provided a heat treatment method in which high-quality tempering treatment can be performed in a short period of time. In this method, when an object to be treated is tempered after being quenched, the object to be treated is rapidly cooled to a 90% martensite transformation finishing temperature without being cooled to the ordinary temperature after quench heating, and then is subjected to 100% martensite transformation by using a 100° C. liquid, and thereafter, tempering treatment is performed after the whole of the object to be treated is soaked by using the 100° C. liquid.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: September 30, 2014
    Assignee: Denki Kogyo Co., Ltd.
    Inventors: Seiichi Sawatsubashi, Keiichi Kubo
  • Publication number: 20140261902
    Abstract: A method for forming and treating a steel article of a high strength and high ductility alloy particularly suited for use as armor plate. The method includes the steps of providing a starting material for the steel article, heating the starting material to a peak temperature range in less than ten seconds, holding the heated steel composition at the peak temperature range for between two and six seconds, quenching the heated steel composition from the peak temperature range to below 100° C. (212° F.) at a temperature rate reduction of 400 and 3000° C./sec (752 and 5432° F./sec), removing residual quench media from the surface of the quenched steel composition, tempering the quenched steel composition at a temperature of 100 to 260° C. (212 to 500° F.); and air cooling the tempered steel composition to less than 100° C. (212° F.) to form a steel having desired mechanical properties.
    Type: Application
    Filed: July 24, 2013
    Publication date: September 18, 2014
    Applicant: BUFFALO ARMORY LLC
    Inventors: John BATISTE, Todd ZYRA, Brent NICHOLSON, Jim SLOAN, Brad COOPER, John SPARLING, Mark TUREK, Mike HASELKORN
  • Publication number: 20140216613
    Abstract: The present invention relates to a method for heat treatment of a columnar work. In order to provide the method for heat treatment of a columnar work being able to attain a high productivity, a reduction of cost, and an improvement of quality, as compared with the prior art, the method for heat treatment of a columnar work of the present invention includes a quench-hardening step and a tempering step being carried out after the quench-hardening step, the quench-hardening step includes a first quench-hardening step and a second quench-hardening step being carried out after the first quench-hardening step, the entire region of the columnar work from an outer circumferential surface to a core thereof, or a partial region thereof, is heated up to a temperature not lower than a transformation temperature Ac3, and then, the work is quench-hardened.
    Type: Application
    Filed: February 7, 2013
    Publication date: August 7, 2014
    Inventor: Weidong XUE
  • Patent number: 8747575
    Abstract: A martensitic stainless steel for inexpensive seamless pipe having 655 MPa yield strength, high toughness and excellent corrosion resistance in high CO2 environments, and a method for manufacturing thereof is provided. The steel comprises C: 0.005-0.05%, Si: 0.1-0.5%, Mn: 0.1-2.0%, P: ?0.05%, S: ?0.005%, Cr: 10.0-12.5%, Mo: 0.1-0.5%, Ni: 1.5-3.0%, N: ?0.02%, Al: 0.01-0.1%, by weight, while FI value defined by the formula [FI=Cr+Mo?Ni?30(C+N)] being 5.00 to 8.49, and balance of substantially Fe. The method comprises the steps of reheating the cooled steel at temperatures from 780° C. to 960° C., quenching the reheated steel, and then tempering the quenched steel at temperatures from 550° C. to 650° C.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: June 10, 2014
    Assignee: NKKTUBES
    Inventors: Shuji Hashizume, Yusuke Minami, Tatsuo Ono
  • Patent number: 8728257
    Abstract: The invention provides a high tensile strength steel material having a tensile strength of 600 MPa, which is excellent in delayed fracture resistance property, and a method of manufacturing the steel material. As means for this, a steel material contains, in mass percent, C of 0.02 to 0.25%, Si of 0.01 to 0.8%, Mn of 0.5 to 2.0%, Al of 0.005 to 0.1%, N of 0.0005 to 0.008%, P of 0.03% or less, and S of 0.03% or less. In addition, the steel material contains at least one element selected from Mo, Nb, V, and Ti, and contains at least one of Cu, Ni, Cr, W, B, Ca, REM and Mg, as needed. The remainder includes Fe and inevitable impurities. In addition, in the steel material, precipitates having an average grain size of 20 nm or less, which contains at least one of Mo, Nb, V and Ti, are contained in steel in the number of at least 5 per 250000 nm2, and a microstructure includes residual austenite in a volume fraction of 0.5 to 5%. When Ca to be added is specified to be 0.0010% to 0.
    Type: Grant
    Filed: May 29, 2006
    Date of Patent: May 20, 2014
    Assignee: JFE Steel Corporation
    Inventors: Kenji Oi, Akihide Nagao, Kenji Hayashi
  • Patent number: 8691030
    Abstract: The present application describes a steel composition that provides enhanced corrosion resistance. This steel composition includes one of vanadium in an amount of 1 wt % to 9 wt %, titanium in an amount of about 1 wt % to 9 wt %, and a combination of vanadium and titanium in an amount of 1 wt % to about 9 wt %. In addition, the steel composition includes carbon in an amount of 0.03 wt % to about 0.45 wt %, manganese in an amount up to 2 wt % and silicon in an amount up to 0.45 wt %. In one embodiment, the steel composition includes a microstructure of one of the following: ferrite, martensite, tempered martensite, dual phase ferrite and martensite, and dual phase ferrite and tempered martensite. Further, the present application describes a method for processing the steel composition and use of equipment such as oil country tubular goods, fabricated with the steel composition.
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: April 8, 2014
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Dylan V. Pugh, Joseph C. Bondos, Shiun Ling, Raghavan Ayer, Shalawn K. Jackson, Jayoung Koo, Swarupa S. Bangaru
  • Patent number: 8657972
    Abstract: A bainitic steel with simultaneous high yield strength and high fracture toughness includes at least 5 volume percent austenite as well as iron, carbon, and silicon. The silicon is present in an amount of at least 1.5 weight percent of total weight of the bainitic steel. A method of forming the steel by austempering is also provided.
    Type: Grant
    Filed: December 24, 2008
    Date of Patent: February 25, 2014
    Assignee: Wayne State University
    Inventor: Susil K. Putatunda
  • Patent number: 8652396
    Abstract: A method continuously creates a bainite structure in a carbon steel, especially a strip steel by austenitizing the carbon steel; introducing the austenitized carbon steel into a bath containing a quenching agent; adjusting the carbon steel to the transformation temperature for bainite and maintaining the transformation temperature for a certain period of time; and then cooling the carbon steel. The carbon steel stays in the bath until a defined percentage of the bainite structure relative to the total structure of the carbon steel has formed. Residues of the quenching agent are removed from the surface of the carbon steel by blowing the same off when the carbon steel is discharged from the bath, and the remaining structure components of the carbon steel are then transformed into bainite in an isothermal tempering station without deflecting the carbon steel at all.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: February 18, 2014
    Assignees: C.D. Wälzholz GmbH, Ebner Industrieofenbau GmbH
    Inventors: Werner Kaiser, Heinz Hoefinghoff, Hans-Toni Junius, Michael Hellmann, Peter Ebner, Heribert Lochner
  • Patent number: 8652273
    Abstract: There are provided a steel for deep drawing, and a method for manufacturing the steel and a high pressure container. The steel for deep drawing includes, by weight: C: 0.25 to 0.40%, Si: 0.15 to 0.40%, Mn: 0.4 to 1.0%, Al: 0.001 to 0.05%, Cr: 0.8 to 1.2%, Mo: 0.15 to 0.8%, Ni: 1.0% or less, P: 0.015% or less, S: 0.015% or less, Ca: 0.0005 to 0.002%, Ti: 0.005 to 0.025%, B: 0.0005 to 0.0020% and the balance of Fe and inevitable impurities, wherein a microstructure of the steel has a triphase structure of ferrite, bainite and martensite. The steel for deep drawing may be useful to further improve the strength without the deterioration of the toughness by adding a trace of Ti and B, compared to the conventional steels having a strength of approximately 1100 MPa.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: February 18, 2014
    Assignee: Posco
    Inventors: Soon Taik Hong, Sung Ho Jang, Ki Hyun Bang
  • Patent number: 8647448
    Abstract: A steel piston ring and a steel cylinder liner are described which comprise as the main body a steel composition which has good nitridability. The steel composition consists of the following elements: 0-0.5 weight % B, 0.5-1.2 weight % C, 4.0-20.0 weight % Cr, 0-2.0 weight % Cu, 45.30-91.25 weight % Fe, 0.1-3.0 weight % Mn, 0.1-3.0 weight % Mo, 0-0.05 weight % Nb, 2.0-12.0 weight % Ni, 0-0.1 weight % P, 0-0.05 weight % Pb, 0-0.05 weight % S, 2.0-10.0 weight % Si, 0-0.05 weight % Sn, 0.05-2.0 weight % V, 0-0.2 weight % Ti and 0-0.5 weight % W. The steel piston ring and the steel cylinder liner can be manufactured in a casting process using the machinery and technology employed for the manufacture of cast iron parts.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: February 11, 2014
    Assignee: Federal-Mogul Burscheid GmbH
    Inventor: Laszlo Pelsoeczy
  • Patent number: 8640341
    Abstract: A method of producing a rolling sliding member, wherein, after a work for a rolling sliding member, which is made of a bearing steel and formed in a predetermined shape, is quenched, a heating start temperature is set to be 10 to 100° C., a heating finish temperature is set to be 220 to 350° C., a time between the heating finish time and the heating start time is set to be a heating time, the quenched work for the rolling sliding member is heated so that a rate of temperature increase indicated by the following formula becomes 7 to 35° C./s rate of temperature increase=(heating finish temperature?heating start temperature)/heating time, the work is tempered by being cooled without being maintained at a heating finish temperature from the heating finish time.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: February 4, 2014
    Assignee: JTEKT Corporation
    Inventors: Towako Matsui, Katsuhiko Kizawa
  • Patent number: 8636859
    Abstract: Method for austempering at least one part of a work piece, which method comprises the steps of: a) heating at least one part of the work piece to an initial austenitizing temperature (T1); b) subjecting said at least one part of the work piece to one or more austenitizing temperatures (T1 . . . T1n) for a predetermined time to austenitize it; c) quenching said at least one part of the work piece; d) heat treating said at least one part of the work piece at one or more austempering temperatures (T2 . . . T2n) for a predetermined time to austemper it; e) cooling the at least one part of the work piece; whereby at least one of the steps a) to e) is/are at least partly carried out under Hot Isostatic Pressing (HIP) conditions.
    Type: Grant
    Filed: May 28, 2009
    Date of Patent: January 28, 2014
    Assignee: Indexator Group AB
    Inventor: Richard Larker
  • Patent number: 8636856
    Abstract: Embodiments of the present disclosure comprise carbon steels and methods of manufacture. In one embodiment, quenching and tempering procedure is performed in which a selected steel composition is formed and heat treated to yield a slightly tempered microstructure having a fine carbide distribution. In another embodiment, a double austenizing procedure is disclosed in which a selected steel composition is formed and subjected to heat treatment to refine the steel microstructure. In one embodiment, the heat treatment may comprise austenizing and quenching the formed steel composition a selected number of times (e.g., 2) prior to tempering. In another embodiment, the heat treatment may comprise subjecting the formed steel composition to austenizing, quenching, and tempering a selected number of times (e.g., 2). Steel products formed from embodiments of the steel composition in this manner (e.g., seamless tubular bars and pipes) will possess high yield strength, e.g.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: January 28, 2014
    Assignee: Siderca S.A.I.C.
    Inventors: Eduardo Altschuler, Teresa Perez, Edgardo Lopez, Constantino Espinosa, Gonzalo Gomez
  • Publication number: 20130333811
    Abstract: A method for forming and treating a steel article of a high strength and high ductility alloy particularly suited for use as armor plate. The method includes the steps of providing a starting material for the steel article, heating the starting material to a peak temperature range in less than ten seconds, holding the heated steel composition at the peak temperature range for between two and six seconds, quenching the heated steel composition from the peak temperature range to below 100° C. (212° F.) at a temperature rate reduction of 400 and 3000° C./sec (752 and 5432° F./sec), removing residual quench media from the surface of the quenched steel composition, tempering the quenched steel composition at a temperature of 100 to 260° C. (212 to 500° F.); and air cooling the tempered steel composition to less than 100° C. (212° F.) to form a steel having desired mechanical properties.
    Type: Application
    Filed: March 15, 2013
    Publication date: December 19, 2013
    Applicant: BUFFALO ARMORY LLC
    Inventors: John BATISTE, Todd ZYRA, Brent NICHOLSON, Jim SLOAN, Brad COOPER, Jack SPARLING, Mark TUREK, Mike HASELKORN
  • Publication number: 20130233454
    Abstract: An aspect of the present disclosure is directed to low-alloy steels exhibiting high hardness and an advantageous level of multi-hit ballistic resistance with low or no crack propagation imparting a level of ballistic performance suitable for military armor applications. Various embodiments of the steels according to the present disclosure have hardness in excess of 550 BHN and demonstrate a high level of ballistic penetration resistance relative to conventional military specifications.
    Type: Application
    Filed: April 19, 2013
    Publication date: September 12, 2013
    Applicant: ATI Properties, Inc.
    Inventors: Ronald E. Bailey, Thomas R. Parayil, Glenn J. Swiatek
  • Patent number: 8524016
    Abstract: A method of making an austempered ductile iron article is disclosed. The method includes providing a melt of a ductile iron alloy composition. The method also includes casting the melt into a mold to form a casting. The method further includes cooling the casting to an austempering temperature by circulating a coolant through the mold; wherein cooling comprises solidifying the melt and forming a ductile iron article. Still further, the method includes heating the casting to maintain the austempering temperature for an interval sufficient to form an austempered ductile iron article that comprises a microstructure comprising ausferrite.
    Type: Grant
    Filed: January 3, 2012
    Date of Patent: September 3, 2013
    Assignee: General Electric Company
    Inventors: Junyoung Park, Jason Robert Parolini
  • Patent number: 8500924
    Abstract: A high-strength steel plate includes the following composition: 0.18 to 0.23 mass % of C; 0.1 to 0.5 mass % of Si; 1.0 to 2.0 mass % of Mn; 0.020 mass % or less of P; 0.010 mass % or less of S; greater than 0.5 mass % and equal to or less than 3.0 mass % of Cu, 0.25 to 2.0 mass % of Ni; 0.003 to 0.10 mass % of Nb; 0.05 to 0.15 mass % of Al; 0.0003 to 0.0030 mass % of B; 0.006 mass % or less of N; and a balance composed of Fe and inevitable impurities. A weld crack sensitivity index Pcm of the high-strength steel plate is calculated by Pcm=[C]+[Si]/30+[Mn]/20+[Cu]/20+[Ni]/60+[Cr]/20+[Mo]/15+[V]/10+5[B], and is 0.39 mass % or less. The Ac3 transformation point is equal to or less than 850° C., the percentage value of a martensite structure is equal to or greater than 90%, the yield strength is equal to or greater than 1300 MPa, and the tensile strength is equal to or greater than 1400 MPa and equal to or less than 1650 MPa.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: August 6, 2013
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Tatsuya Kumagai, Akira Usami, Masaharu Oka
  • Patent number: 8414715
    Abstract: Embodiments of the present disclosure comprise carbon steels and methods of manufacture. In one embodiment, a double austenizing procedure is disclosed in which a selected steel composition is formed and subjected to heat treatment to refine the steel microstructure. In one embodiment, the heat treatment may comprise austenizing and quenching the formed steel composition a selected number of times (e.g., 2) prior to tempering. In another embodiment, the heat treatment may comprise subjecting the formed steel composition to austenizing, quenching, and tempering a selected number of times (e.g., 2). Steel products formed from embodiments of the steel composition in this manner (e.g., seamless tubular bars and pipes) will possess high yield strength, at least about 175 ksi (about 1200 MPa) while maintaining good toughness.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: April 9, 2013
    Assignee: Siderca S.A.I.C.
    Inventors: Eduardo Altschuler, Teresa Perez, Edgardo Lopez, Constantino Espinosa, Gonzalo Gomez
  • Patent number: 8389127
    Abstract: A hot formed part of high-strength steel includes a body having an opening and formed in one piece with at least one tab in the form of a tongue projecting into the opening for holding a connection piece captive on the body. The tab thus is formed in one piece with the hot formed part and is produced jointly with the openings during manufacture of the hot formed part in the hot forming process.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: March 5, 2013
    Assignee: Benteler Automobiltechnik GmbH
    Inventor: Markus Kettler
  • Patent number: 8372222
    Abstract: A system and method for producing locally austempered ductile iron includes a computer program for closely controlling the heating and cooling of an iron part or workpiece. The process allows for the austempering of a relatively low cost iron workpiece to produce significantly higher quality end products. The locally austempered regions may be formed to a substantial controlled depth.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: February 12, 2013
    Assignee: Ajax Tocco Magnethermic Corporation
    Inventors: George D. Pfaffmann, John R. Keough, Robert J. Madeira, Christopher Allen Bixler
  • Patent number: 8372219
    Abstract: Gun barrel for firearms made from a deformed material and method for producing the gun barrel material. The material has a chemical composition in % by weight of: Content C Si Mn P S Cr Mo Min 0.28 0.08 0.15 3.6 1.2 Max 0.36 0.26 0.35 0.005 0.002 4.4 1.8 Content Ni V W Ti As + Sn + Sb Fe Min 0.42 Rest Max <0.5 0.5? 0.15 0.08 0.007 and impurities due to smelting. The material has a hardness of at least 46 to 48 HRC.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: February 12, 2013
    Assignee: Boehler Edelstahl GmbH & Co. KG
    Inventors: Devrim Caliskanoglu, Herbert Schweiger, Ingo Siller
  • Patent number: 8328960
    Abstract: A high strength bainitic steel and a process for producing seamless pipes for OCTG applications are described. In particular, the advantages ensuing to the steel of the invention are the improvement in strength-toughness over tempered martensitic steels, and a simplified thermal treatment. Quenching is not necessary and by avoiding the quenching treatment the microstructure results far more homogeneous, which allows thick walled tubes to be produced. For the same steel composition, in comparison to conventional tempered martensitic structures, a better combination of strength and toughness can be achieved, in particular by tempering as rolled carbide-free bainitic structures.
    Type: Grant
    Filed: November 19, 2007
    Date of Patent: December 11, 2012
    Assignee: Tenaris Connections Limited
    Inventors: Gonzalo Roberto Gomez, Teresa Estela Pérez, Harsad Kumar Dharamshi Hansraj Bhadeshia
  • Patent number: 8317943
    Abstract: Disclosed is a ball for a constant velocity joint, and a method for producing the same. The ball for a constant velocity joint is produced via a quenching step for heating a spherical body consisting of a material corresponding to a high carbon chromium bearing steel regulated by Japanese Industrial Standards (JIS) to 840-900° C. and then cooling the spherical body under such a condition as 10-25 vol. % of austenite remains up to a first part where the depth from the surface is 0.1 mm, a step for tempering the spherical body at 150° C. or more, and a step for shot peening the spherical body and imparting a compression residual stress of ?1000 MPa or more to a region reaching second part where the depth from the surface is 0.2 mm.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: November 27, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Takafumi Murakami, Naoto Shibata, Shunta Osako
  • Patent number: 8313589
    Abstract: An object of the present invention is to provide at a low cost a low-alloy steel having a high strength and excellent high-pressure hydrogen environment embrittlement resistance characteristics under a high-pressure hydrogen environment. The invention is a high-strength low-alloy steel excellent in high-pressure hydrogen environment embrittlement resistance characteristics, which is characterized in that the steel has a composition comprising C: 0.10 to 0.20%, Si: 0.10 to 0.40%, Mn: 0.50 to 1.20%, Cr: 0.20 to 0.80%, Cu: 0.10 to 0.50%, Mo: 0.10 to 1.00%, V: 0.01 to 0.10%, B: 0.0005 to 0.005% and N: 0.01% or less, by mass, with the balance consisting of Fe and unavoidable impurities.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: November 20, 2012
    Assignee: The Japan Steel Works, Ltd.
    Inventors: Koichi Takasawa, Yoru Wada, Ryoji Ishigaki, Yasuhiko Tanaka
  • Patent number: 8298353
    Abstract: A transformation toughened, high-strength steel alloy useful in plate steel applications achieves extreme fracture toughness (Cv > 80 ft-lbs corresponding to KId=200 ksi.in ½) at strength levels of 150-180 ksi yield strength, is weldable and formable. The alloy is characterized by dispersed austenite stabilization for transformation toughening to a weldable, bainitic plate steel and is strengthened by precipitation of M2C carbides in combination with copper and nickel. The desired microstructure is a matrix containing a bainite-martensite mix, BCC copper and M2C carbide particles for strengthening with a fine dispersion of optimum stability austenite for transformation toughening. The bainite-martensite mix is formed by air-cooling from solution treatment temperature and subsequent aging at secondary hardening temperatures to precipitate the toughening and strengthening dispersions.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: October 30, 2012
    Assignee: Northwestern University
    Inventors: Arup Saha, Gregory B. Olson
  • Publication number: 20120261038
    Abstract: A low alloy steel ingot contains from 0.15 to 0.30% of C, from 0.03 to 0.2% of Si, from 0.5 to 2.0% of Mn, from 0.1 to 1.3% of Ni, from 1.5 to 3.5% of Cr, from 0.1 to 1.0% of Mo, and more than 0.15 to 0.35% of V, and optionally Ni, with a balance being Fe and unavoidable impurities. Performing quality heat treatment including a quenching step and a tempering step to the low alloy steel ingot to obtain a material, which has a grain size number of from 3 to 7 and is free from pro-eutectoid ferrite in a metallographic structure thereof, and which has a tensile strength of from 760 to 860 MPa and a fracture appearance transition temperature of not higher than 40 ° C.
    Type: Application
    Filed: April 17, 2012
    Publication date: October 18, 2012
    Applicants: KABUSHIKI KAISHA TOSHIBA, THE JAPAN STEEL WORKS, LTD.
    Inventors: Satoru OHSAKI, Kazuhiro MIKI, Tsukasa AZUMA, Koji KAJIKAWA, Shigeru SUZUKI, Masayuki YAMADA, Itaru MURAKAMI, Kenichi OKUNO, Liang YAN, Reki TAKAKU, Akihiro TANIGUCHI, Tetsuya YAMANAKA, Makoto TAKAHASHI, Kenichi IMAI, Osamu WATANABE, Joji KANEKO
  • Publication number: 20120180912
    Abstract: A high strength and high toughness cast steel material of the invention has a composition comprising 0.10 to 0.20% by mass of C, 0.10 to 0.50% by mass of Si, 0.40 to 1.20% by mass of Mn, 2.00 to 3.00% by mass of Ni, 0.20 to 0.70% by mass of Cr, and 0.10 to 0.50% by mass of Mo, and further comprising Fe and unavoidable impurities. The high strength and high toughness cast steel material of the invention is produced by subjecting an ingot having the above composition to annealing at 1,000 to 1,100° C., quenching at 850 to 950° C., tempering at 610 to 670° C., and then, if desired, stress-relief annealing at less than 610° C.
    Type: Application
    Filed: September 24, 2010
    Publication date: July 19, 2012
    Applicant: THE JAPAN STEEL WORKS, LTD.
    Inventors: Yoshihiro Gotoh, Shinji Tanaka, Tsukasa Azuma
  • Publication number: 20120174749
    Abstract: A low-carbon martensitic armour steel comprises at least Fe, C, Si and Ni and has a ratio of yield strength to ultimate tensile strength of less than 0.7. The steel includes retained austenite at a volume fraction of at least 1%. The low-carbon martensitic armour steel can be prepared by subjecting a steel which comprises at least Fe, C, Si and Ni and which has a martensite start temperature of less than 210° C. to an austenisation heat treatment step at a temperature of at least 800° C., quenching the steel, and subjecting the steel to a tempering step at a temperature of less than 300° C.
    Type: Application
    Filed: September 25, 2007
    Publication date: July 12, 2012
    Inventors: Waldo Edmund Stumpf, Maweja Kasonde
  • Patent number: 8216400
    Abstract: A high-strength steel plate includes the following composition: 0.18 to 0.23 mass % of C; 0.1 to 0.5 mass % of Si; 1.0 to 2.0 mass % of Mn; 0.020 mass % or less of P; 0.010 mass % or less of S; 0.5 to 3.0 mass % of Ni; 0.003 to 0.10 mass % of Nb; 0.05 to 0.15 mass % of Al; 0.0003 to 0.0030 mass % of B; 0.006 mass % or less of N; and a balance composed of Fe and inevitable impurities. A weld crack sensitivity index Pcm of the high-strength steel plate is 0.36 mass % or less. The Ac3 transformation point is equal to or less than 830° C., the percentage value of a martensite structure is equal to or greater than 90%, the yield strength is equal to or greater than 1300 MPa, and the tensile strength is equal to or greater than 1400 MPa and equal to or less than 1650 MPa. A prior austenite grain size number N? is calculated by N?=?3+log2m using an average number m of crystal grains per 1 mm2 in a cross section of a sample piece of the high-strength steel plate.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: July 10, 2012
    Assignee: Nippon Steel Corporation
    Inventor: Tatsuya Kumagai
  • Patent number: 8192561
    Abstract: Method for manufacturing at least one part of a device for mounting directly or indirectly on an arm of an earth-moving or material-handling machine, such as an excavator, tractor, harvester, forwarder or crane, whereby the device enables coupling and/or positioning (tilt and/or turn) of a tool (14), such as a bucket, grapple, fork, vibratory compactor or harvesting head, relatively to the arm of the machine. The method includes the steps of: a) forming a melt including unalloyed or alloyed ductile iron, b) casting at least one part of a device from the melt, c) allowing the at least one part of the device to cool, d) austenitizing the at least one part of the device, e) quenching the at least one part of the device, f) austempering the at least one part of the device, and g) allowing the at least one part of the device to cool.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: June 5, 2012
    Assignee: Indexator Group AB
    Inventor: Richard Larker
  • Patent number: 8147626
    Abstract: A high strength steel plate containing 0.02 to 0.08% C, by mass, and has substantially a two phase microstructure of ferrite and bainite. The ferrite contains precipitates having a particle size of 30 nm or smaller grain size. The steel plate has a yield strength of 448 MPa or higher. A method for manufacturing the high strength steel plate which comprises hot rolling, accelerated cooling and reheating. The accelerated cooling is conducted down to a temperature of 300 to 600° C. at a cooling rate of 5° C./s or higher. The reheating is conducted up to a temperature of 550 to 700° C. at a heating rate of 0.5° C./s or higher.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: April 3, 2012
    Assignee: JFE Steel Corporation
    Inventors: Nobuyuki Ishikawa, Toyohisa Shinmiya, Minoru Suwa, Shigeru Endo
  • Patent number: 8137483
    Abstract: A method of designing low cost, high strength, high toughness martensitic steel uses mathematical modeling to define optimum low cost chemical compositions, the content of retained austenite, and critical temperatures; melting an ingot, processing same, making steel articles, and heat treating the articles using the critical temperatures and the content of retained austenite. The new steel comprises, by weight, about 0.3-0.45% of C; at most 2.5% of Cr; at most 1.0% of Mo; at most 3.50% of Ni; about 0.3 to 1.5% of Mn; about 0.1-1.3% of Si; about 0.1-1.0% of Cu; Cu being less than Si; about 0.1 to 1.0% of V+Ti+Nb; at most 0.25% of Al; the sum of alloying elements being less than about 11.5%; the balance being essentially Fe and incidental impurities. Procedures of melting, processing and heat treatment using the mathematical model are disclosed.
    Type: Grant
    Filed: May 11, 2009
    Date of Patent: March 20, 2012
    Inventors: Vladimir A. Fedchun, Gregory Vartanov
  • Patent number: 8066828
    Abstract: A method for heat treatment of steel and a system thereof is provided. First the steel is austenitized at a suitable temperature and then the temperature is rapidly brought down to the austempering temperature. Here the cyclic austempering is carried out between two austempering temperatures by modulating the temperature with controlled heating and cooling and the controlled temperature modulation is obtained by controlling the temperature-time profile in a batch furnace or by controlling the zone temperatures in a continuous furnace. This method of cyclic austempering reduces the austempering time, reduces the energy consumption and emissions, enhances the productivity and reduces the process cost.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: November 29, 2011
    Assignees: Tata Consultancy Services, Ltd., Illinois Institute of Technology
    Inventors: Philip Nash, Vivekanand Sista, Satyam Sahay
  • Patent number: 8066830
    Abstract: A method for the production of steels is provided. A heat treatment is carried out, in which the steel is hardened in water twice at different high temperatures, and subsequently subjected to an annealing treatment. It has been shown that the steel 26NiCrMoV14-5 has a high subzero toughness. In one aspect, the steel is usable down to a temperature of at least minus 170° C.
    Type: Grant
    Filed: September 13, 2006
    Date of Patent: November 29, 2011
    Assignee: Siemens Aktiengesellschaft
    Inventors: Ralf Bode, Beate Langenhan
  • Patent number: 8016954
    Abstract: A transformation toughened, high-strength steel alloy useful in plate steel applications achieves extreme fracture toughness (Cv & gt; 80 ft-lbs corresponding to KId & equals; 200 ksi.in½) at strength levels of 150-180 ksi yield strength, is weldable and formable. The alloy is characterized by dispersed austenite stabilization for transformation toughening to a weldable, bainitic plate steel and is strengthened by precipitation of M2C carbides in combination with copper and nickel. The desired microstructure is a matrix containing a bainite-martensite mix, BCC copper and M2C carbide particles for strengthening with a fine dispersion of optimum stability austenite for transformation toughening. The bainite-martensite mix is formed by air-cooling from solution treatment temperature and subsequent aging at secondary hardening temperatures to precipitate the toughening and strengthening dispersions.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: September 13, 2011
    Assignee: Northwestern University
    Inventors: Arup Saha, Gregory B. Olson
  • Patent number: 7972452
    Abstract: A method continuously creates a bainite structure in a carbon steel, especially a strip steel by austenitizing the carbon steel; introducing the austenitized carbon steel into a bath containing a quenching agent; adjusting the carbon steel to the transformation temperature for bainite and maintaining the transformation temperature for a certain period of time; and then cooling the carbon steel. The carbon steel stays in the bath until a defined percentage of the bainite structure relative to the total structure of the carbon steel has formed. Residues of the quenching agent are removed from the surface of the carbon steel by blowing the same off when the carbon steel is discharged from the bath, and the remaining structure components of the carbon steel are then transformed into bainite in an isothermal tempering station without deflecting the carbon steel at all.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: July 5, 2011
    Assignees: C.D. Wälzholz GmbH, Ebner Industrieofenbau GmbH
    Inventors: Werner Kaiser, Heinz Höfinghoff, Hans-Toni Junius, Michael Hellmann, Peter Ebner, Heribert Lochner
  • Patent number: 7931757
    Abstract: A thick-walled seamless steel pipe for line pipe which has a high strength and improved toughness and corrosion resistance in spite of the thick wall and which is suitable for use as a riser and flow line has a chemical composition comprising, in mass percent, C: 0.02-0.08%, Si: at most 0.5%, Mn: 1.5-3.0%, Al: 0.001-0.10%, Mo: greater than 0.4%-1.2%, N: 0.002-0.015%, at least one of Ca and REM in a total amount of 0.0002-0.007%, and a remainder of Fe and impurities, with the impurities having the content of P: at most 0.05%, S: at most 0.005%, and O: at most 0.005%, the chemical composition satisfying the inequality: 0.8?[Mn]×[Mo]?2.6, wherein [Mn] and [Mo] are the numbers equivalent to the contents of Mn and Mo, respectively, in mass percent.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: April 26, 2011
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Kunio Kondo, Yuji Arai, Nobuyuki Hisamune
  • Patent number: 7918948
    Abstract: A method of production of 780 MPa class high strength steel plate excellent low temperature toughness comprising heating a steel slab of containing, by mass %, C: 0.06 to 0.15%, Si: 0.05 to 0.35%, Mn: 0.60 to 2.00%, P: 0.015% or less, S: 0.015% or less, Cu: 0.1 to 0.5%, Ni: 0.1 to 1.5%, Cr: 0.05 to 0.8%, Mo: 0.05 to 0.6%, Nb: less than 0.005%, V: 0.005 to 0.060%, Ti: less than 0.003%, Al: 0.02 to 0.10%, B: 0.0005 to 0.003%, and N: 0.002 to 0.006% to 1050° C. to 1200° C. in temperature, hot rolling ending at 870° C. or more, waiting for 10 seconds to 90 seconds, then cooling from 840° C. or more in temperature by a 5° C./s or more cooling rate to 200° C., then tempering at 450° C. to 650° C. in temperature for 20 minutes to 60 minutes.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: April 5, 2011
    Assignee: Nippon Steel Corporation
    Inventors: Kazuhiro Fukunaga, Ryuji Uemori, Yoshiyuki Watanabe, Yoshihide Nagai, Rikio Chijiiwa
  • Patent number: 7905968
    Abstract: Method of heat treating cultivating disc, coulter or grain drill blades made from heat quenched boron steels, such that they can be re-edged and re-sharpened using rollers, and yet retain excellent toughness, hardness and wear characteristics. The invention also includes the cultivating disc, coulter or grain drill blades made from boron steel, which have been heat treated according to the inventive method, such that can be re-edged or sharpened using pinch rollers. The cultivating blades are especially useful in the dry, sandy soils such as found in the wheat growing regions extending from central Kansas down into Texas.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: March 15, 2011
    Inventor: Douglas G Bruce
  • Patent number: 7905967
    Abstract: The occurrence of delayed fracture which is found in a hot worked martensitic stainless steel is prevented by subjecting the steel, after hot working and prior to heat treatment for hardening by quenching from a temperature of at least Ac1 point of the steel, to preliminary softening heat treatment under such conditions that the softening parameter P defined below is at least 15,400 and the softening temperature T is lower than the Ac1 point: P(softening parameter):P=T(20+log t) T: softening temperature [K] t: duration of softening treatment [Hr]. The present invention is particularly effective for a martensitic stainless steel having a steel composition in which the amount of effective dissolved C and N (=[C*+10N*]) where C* and N* are calculated by the following formulas is larger than 0.45: C*=C?[12{(Cr/52)×(6/23)}/10, and N*=N?[14{(V/51)+(Nb/93)}/10]?[14{(Ti/48)+(B/11)+(Al/27)}/10].
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: March 15, 2011
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventor: Nobuyuki Mori
  • Patent number: 7896984
    Abstract: A seamless steel pipe for line pipe having high strength and stable toughness and having resistance to sulfide corrosion cracking at low temperatures to room temperature is provided. A seamless steel pipe according to the present invention has a chemical composition comprising, in mass percent, C: 0.03-0.08%, Si: 0.05-0.5%, Mn: 1.0-3.0%, Mo: greater than 0.4% to 1.2%, Al: 0.005-0.100%, Ca: 0.001-0.005%, a remainder of Fe and impurities including N, P, S, O, and Cu, with the impurities containing at most 0.01% of N, at most 0.05% of P, at most 0.01% of S, at most 0.01% of O, and at most 0.1% of Cu, and having a microstructure comprising a bainitic-martensitic dual phase structure.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: March 1, 2011
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Kenji Kobayashi, Tomohiko Omura, Kunio Kondo, Yuji Arai, Nobuyuki Hisamune
  • Patent number: 7857917
    Abstract: The present invention provides a high strength thick steel plate for marine structures superior in weldability and low temperature toughness of the HAZ, which is able to be produced at a low cost without use of a complicated method of production, and a method of production of the same, that is, steel for welded structures excellent in low temperature toughness of the weld heat affected zone and a method of production of the same characterized by casting molten steel containing, by mass %, C: 0.03 to 0.12%, Si: 0.05 to 0.30%, Mn: 1.2 to 3.0%, P: 0.015% or less, S: 0.001 to 0.015%, Cu+Ni: 0.10% or less, Al: 0.001 to 0.050%, Ti: 0.005 to 0.030%, Nb: 0.005 to 0.10%, and N: 0.0025 to 0.0060% by the continuous casting method, making the cooling rate from near the solidification point to 800° C. in the secondary cooling at that time 0.06 to 0.6° C./s, hot rolling the obtained slab, and cooling it from a temperature of 800° C. or more.
    Type: Grant
    Filed: July 21, 2005
    Date of Patent: December 28, 2010
    Assignee: Nippon Steel Corporation
    Inventors: Kazuhiro Fukunaga, Yasushi Mizutani, Rikio Chijiiwa, Yoshiyuki Watanabe
  • Patent number: 7849599
    Abstract: A process to manufacture an oilfield component comprises selectively reinforcing a base material with an age-hardenable clad material and age-hardening the clad material for a selected time and at a selected temperature profile, wherein the age-hardening results in the clad material developing a selected strength gradient. A body of a ram blowout preventer comprises, a low-ally base material, a vertical bore through the body, and a horizontal bore through the body intersecting the vertical bore, wherein at least a portion of the body is selectively reinforced with a clad material, and wherein the clad material is age-hardened for a selected time and at a selected temperature profile resulting in the clad material developing a selected strength gradient.
    Type: Grant
    Filed: March 1, 2007
    Date of Patent: December 14, 2010
    Assignee: Hydril USA Manufacturing LLC
    Inventors: Philip A. Huff, Shafiq Khandoker