Multiple Cooling Steps Patents (Class 148/664)
  • Patent number: 10611115
    Abstract: Provided is a tank cooling device that is capable of cooling a tank more quickly. A tank cooling device 4 has a nozzle 40. The nozzle 40 is comprised to supply cooling gas for cooling a tank 100 to an outer surface of the tank 100, with the cooling gas assisted by compressed gas in the nozzle 40. The tank 100 has a tank main body 101 made by using synthetic resin and an end member 102 made by using metal. The nozzle 40 supplies a gas flow to each of the tank main body 101 and the end member 102.
    Type: Grant
    Filed: October 26, 2015
    Date of Patent: April 7, 2020
    Assignee: Koyo Thermo Systems Co., Ltd.
    Inventors: Akihito Yamamoto, Yasuhiro Sasaki, Iwao Morimoto
  • Publication number: 20150101713
    Abstract: A method for forming and treating a steel article of a high strength and ductile alloy. The method includes the steps of providing a starting steel composition for the steel article, preheating the composition, heating the starting material to a peak temperature range in less than forty seconds, holding the heated steel composition at the peak temperature range for between two and sixty seconds, quenching the heated steel composition from the peak temperature range to below 177° C. (350° F.) at a temperature rate reduction of 200 to 3000° C./sec (360 and 5400° F./sec), removing residual quench media from the surface of the quenched steel composition, tempering the quenched steel composition at a temperature of 100 to 704° C. (212 to 1300° F.); and air cooling the tempered steel composition to less than 100° C. (212° F.) to form a steel having desired mechanical properties.
    Type: Application
    Filed: August 15, 2014
    Publication date: April 16, 2015
    Applicant: BUFFALO ARMORY LLC
    Inventors: John BATISTE, Richard CLARE, JR., Jack HEINZ, Brent NICHOLSON
  • Patent number: 8951366
    Abstract: A high-strength cold-rolled steel sheet includes, by mass %, C: 0.10% to 0.40%, Mn: 0.5% to 4.0%, Si: 0.005% to 2.5%, Al: 0.005% to 2.5%, Cr: 0% to 1.0%, and a balance of iron and inevitable impurities, in which an amount of P is limited to 0.05% or less, an amount of S is limited to 0.02% or less, an amount of N is limited to 0.006% or less, the microstructure includes 2% to 30% of retained austenite by area percentage, martensite is limited to 20% or less by area percentage in the microstructure, an average particle size of cementite is 0.01 ?m to 1 ?m, and 30% to 100% of the cementite has an aspect ratio of 1 to 3.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: February 10, 2015
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Kohichi Sano, Chisato Wakabayashi, Hiroyuki Kawata, Riki Okamoto, Naoki Yoshinaga, Kaoru Kawasaki, Natsuko Sugiura, Nobuhiro Fujita
  • Patent number: 8858741
    Abstract: A method for treating high-strength, low-alloy steel includes controlling material responses, such as the crystal structure of the steel, through various processing steps. More specifically, the method includes cold treating the steel to achieve predictable increases in a minimum ultimate tensile strength or desired changes in the crystal structure of the steel. In one embodiment, cold treating the steel operates to controllably increase the minimum ultimate tensile strength of the steel within increasing a specified maximum ultimate tensile strength of the steel. Stated otherwise, cold treating the steel may reduce or narrow a minimum-to-maximum ultimate tensile strength range such that the minimum ultimate tensile strength is closer to the specified maximum ultimate tensile strength.
    Type: Grant
    Filed: May 6, 2009
    Date of Patent: October 14, 2014
    Assignee: Goodrich Corporation
    Inventor: Edward B. Evans
  • Patent number: 8845831
    Abstract: There is provided a heat treatment method in which high-quality tempering treatment can be performed in a short period of time. In this method, when an object to be treated is tempered after being quenched, the object to be treated is rapidly cooled to a 90% martensite transformation finishing temperature without being cooled to the ordinary temperature after quench heating, and then is subjected to 100% martensite transformation by using a 100° C. liquid, and thereafter, tempering treatment is performed after the whole of the object to be treated is soaked by using the 100° C. liquid.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: September 30, 2014
    Assignee: Denki Kogyo Co., Ltd.
    Inventors: Seiichi Sawatsubashi, Keiichi Kubo
  • Patent number: 8815025
    Abstract: A high strength steel, including about 0.05 to about 0.25% of C, less than about 0.5% of Si, about 0.5 to about 3.0% of Mn, not more than about 0.06% of P, not more than about 0.01% of S, about 0.50 to about 3.0% of Sol. Al, not more than about 0.02% of N, about 0.1 to about 0.8% of Mo, about 0.02 to about 0.40% of Ti, and the balance of iron and unavoidable impurities, wherein the steel has a structure formed of at least three phases including a bainite phase, and a retained austenite phase in addition to a ferrite phase having a composite carbide containing Ti and Mo dispersed and precipitated therein, wherein the total volume of the ferrite phase and the bainite phase is not smaller than 80%, the volume of the bainite phase is about 5% to about 60%, and the volume of the retained austenite phase is about 3 to about 20%.
    Type: Grant
    Filed: November 3, 2006
    Date of Patent: August 26, 2014
    Assignees: JFE Steel Corporation, ThyssenKrupp Steel AG
    Inventors: Takeshi Yokota, Akio Kobayashi, Kazuhiro Seto, Yoshihiro Hosoya, Thomas Heller, Brigitte Hammer, Rolf Bode, Günter Stich
  • Patent number: 8784577
    Abstract: A high-tensile-strength hot-rolled steel sheet is provided having a composition which contains 0.02 to 0.08% C, 0.01 to 0.10% Nb, 0.001 to 0.05% Ti and Fe and unavoidable impurities as a balance, wherein the steel sheet contains C, Ti and Nb in such a manner that (Ti+(Nb/2))/C<4 is satisfied, and the steel sheet has a structure where a primary phase of the structure at a position 1 mm away from a surface in a sheet thickness direction is one selected from a group consisting of a ferrite phase, tempered martensite and a mixture structure of a ferrite phase and tempered martensite, a primary phase of the structure at a sheet thickness center position is formed of a ferrite phase, and a difference ?V between a structural fraction (volume %) of a secondary phase at the position 1 mm away from the surface in the sheet thickness direction and a structural fraction (volume %) of a secondary phase at the sheet thickness center position is 2% or less.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: July 22, 2014
    Assignee: JFE Steel Corporation
    Inventors: Chikara Kami, Hiroshi Nakata, Kinya Nakagawa
  • Patent number: 8715429
    Abstract: There is provided a rolled steel with excellent toughness, a drawn wire rod prepared by drawing the rolled steel, and a method for manufacturing the same, in which even if a heating step is omitted, the toughness of the steel can be improved by securing a degenerated pearlite structure in an internal structure of the rolled steel by controlling a content of Mn among components and cooling conditions, and then preventing C diffusion. The rolled steel according to the present invention includes C: 0.15˜0.30%, Si: 0.1˜0.2%, Mn: 1.8˜3.0%, P: 0.035% or less, S: 0.040% or less, the remainder Fe, and other inevitable impurites, as a percentage of weight, in which the microstucture of the rolled steel is composed of ferrite and pearlite including cementite with 150 nm or less of thickness.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: May 6, 2014
    Assignee: POSCO
    Inventors: You-Hwan Lee, Dong-Hyun Kim, Sang-Yoon Lee, Ha-Ni Kim, Yong-Sik Park
  • Patent number: 8652396
    Abstract: A method continuously creates a bainite structure in a carbon steel, especially a strip steel by austenitizing the carbon steel; introducing the austenitized carbon steel into a bath containing a quenching agent; adjusting the carbon steel to the transformation temperature for bainite and maintaining the transformation temperature for a certain period of time; and then cooling the carbon steel. The carbon steel stays in the bath until a defined percentage of the bainite structure relative to the total structure of the carbon steel has formed. Residues of the quenching agent are removed from the surface of the carbon steel by blowing the same off when the carbon steel is discharged from the bath, and the remaining structure components of the carbon steel are then transformed into bainite in an isothermal tempering station without deflecting the carbon steel at all.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: February 18, 2014
    Assignees: C.D. Wälzholz GmbH, Ebner Industrieofenbau GmbH
    Inventors: Werner Kaiser, Heinz Hoefinghoff, Hans-Toni Junius, Michael Hellmann, Peter Ebner, Heribert Lochner
  • Patent number: 8634953
    Abstract: The invention relates to a method and equipment for controlling flatness of a stainless steel strip in connection with cooling after annealing in a finishing line.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: January 21, 2014
    Assignee: Outokumpu OYJ
    Inventor: Stephan Söderlund
  • Publication number: 20140007994
    Abstract: A method for quenching a steel pipe by water cooling from an outer surface thereof, where pipe end portions are not subjected to water cooling, and at least part of a main body other than the pipe end portions is subjected to water cooling. A region(s) that is not subjected to direct water cooling over an entire circumference thereof can be along an axial direction at least in part of the main body other than the pipe end portions. The start and stop of water cooling can be intermittent at least in part of the quenching. During the water cooling of the pipe outer surface, an intensified water cooling can be performed in a temperature range in which the pipe outer surface temperature is higher than Ms point. Thereafter, the cooling can be switched to moderate cooling so that the outer surface is cooled down to Ms point or lower.
    Type: Application
    Filed: March 13, 2012
    Publication date: January 9, 2014
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Akihiro Sakamoto, Kazuo Okamura, Kenji Yamamoto, Tomohiko Omura, Yuji Arai
  • Patent number: 8535458
    Abstract: A steel sheet contains, on a mass percent basis, 0.03%-0.12% C, 0.5% or less Si, 0.8%-1.8% Mn, 0.030% or less P, 0.01% or less S, 0.005%-0.1% Al, 0.01% or less N, 0.035%-0.100% Ti, and the balance being Fe and incidental impurities and has microstructures with a fraction of polygonal ferrite of 80% or more, the polygonal ferrite having an average grain size of 5 to 10 ?m. The amount of Ti present in a precipitate having a size of less than 20 nm is 70% or more of the value of Ti* calculated using expression (1): Ti*=[Ti]?48×[N]/14??(1) where [Ti] and [N] represent a Ti content (percent by mass) and a N content percent by mass), respectively, of the steel sheet.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: September 17, 2013
    Assignee: JFE Steel Corporation
    Inventors: Noriaki Kohsaka, Kazuhiro Seto, Reiko Sugihara, Masahide Watabe, Yasushi Tanaka
  • Patent number: 8518195
    Abstract: The microstructure of a low alloy steel workpiece for cold forming may be beneficially modified by heating the workpiece to a temperature just above its austenite transformation temperature (Ac3 temperature). The steel workpiece is then cooled just below its Ac3 temperature to promote ferrite formation on and between the austenite grains. Heating and cooling, above and below the Ac3 temperature, is repeated a determined number of times to refine the austenite grains before the workpiece is quenched below its martensite transformation temperature to form a mixture of martensite with increased retained austenite. The workpiece may be further heated in its martensite region to increase the proportion of retained austenite before quenching the steel workpiece to an ambient temperature. The formability of the workpiece is improved, as is the strength of its formed shape.
    Type: Grant
    Filed: January 20, 2012
    Date of Patent: August 27, 2013
    Assignee: GM Global Technology Operations LLC
    Inventor: John R. Bradley
  • Patent number: 8414715
    Abstract: Embodiments of the present disclosure comprise carbon steels and methods of manufacture. In one embodiment, a double austenizing procedure is disclosed in which a selected steel composition is formed and subjected to heat treatment to refine the steel microstructure. In one embodiment, the heat treatment may comprise austenizing and quenching the formed steel composition a selected number of times (e.g., 2) prior to tempering. In another embodiment, the heat treatment may comprise subjecting the formed steel composition to austenizing, quenching, and tempering a selected number of times (e.g., 2). Steel products formed from embodiments of the steel composition in this manner (e.g., seamless tubular bars and pipes) will possess high yield strength, at least about 175 ksi (about 1200 MPa) while maintaining good toughness.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: April 9, 2013
    Assignee: Siderca S.A.I.C.
    Inventors: Eduardo Altschuler, Teresa Perez, Edgardo Lopez, Constantino Espinosa, Gonzalo Gomez
  • Patent number: 8404062
    Abstract: A cooling device and a cooling method for a hot strip allow uniform and stable cooling of the strip at a high cooling rate when supplying the coolant to the upper surface of the hot strip. The cooling device includes an upper header unit 21 for supplying a rod-like flow to the upper surface of the strip 10. The upper header unit 21 is formed of the first upper header group including plural first upper headers 21a arranged in a conveying direction and a second upper header group including plural second upper headers 21b arranged in the conveying direction. The cooling device is provided with an ON-OFF mechanism 30 to allow each of the upper headers 21a and 21b of the first and the second upper header groups to independently execute the ON-OFF control (start/end injection control) of an injection (feeding) of the rod-like flow.
    Type: Grant
    Filed: January 15, 2008
    Date of Patent: March 26, 2013
    Assignee: JFE Steel Corporation
    Inventors: Satoshi Ueoka, Naoki Nakata, Takashi Kuroki, Nobuo Nishiura
  • Patent number: 8317944
    Abstract: One or more embodiments relates to a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650° C. The 9 Cr-1 Mo steel has a tempered martensite microstructure and is comprised of both large (0.5-3 ?m) primary titanium carbides and small (5-50 nm) secondary titanium carbides in a ratio of. from about 1:1.5 to about 1.5:1. The 9 Cr-1 Mo steel may be fabricated using exemplary austenizing, rapid cooling, and tempering steps without subsequent hot working requirements. The 9 Cr-1 Mo steel exhibits improvements in total mass gain, yield strength, and time-to-rupture over ASTM P91 and ASTM P92 at the temperature and time conditions examined.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: November 27, 2012
    Assignee: U.S. Department of Energy
    Inventors: Paul D. Jablonski, David Alman, Omer Dogan, Gordon Holcomb, Christopher Cowen
  • Patent number: 8298353
    Abstract: A transformation toughened, high-strength steel alloy useful in plate steel applications achieves extreme fracture toughness (Cv > 80 ft-lbs corresponding to KId=200 ksi.in ½) at strength levels of 150-180 ksi yield strength, is weldable and formable. The alloy is characterized by dispersed austenite stabilization for transformation toughening to a weldable, bainitic plate steel and is strengthened by precipitation of M2C carbides in combination with copper and nickel. The desired microstructure is a matrix containing a bainite-martensite mix, BCC copper and M2C carbide particles for strengthening with a fine dispersion of optimum stability austenite for transformation toughening. The bainite-martensite mix is formed by air-cooling from solution treatment temperature and subsequent aging at secondary hardening temperatures to precipitate the toughening and strengthening dispersions.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: October 30, 2012
    Assignee: Northwestern University
    Inventors: Arup Saha, Gregory B. Olson
  • Patent number: 8282747
    Abstract: A cooling method of steel plate able to raise a cooling uniformity in a steel plate conveyance direction comprising, at a front stage part of a cooling apparatus, not spraying while a front end region of steel plate is passing, spraying by successively increasing the cooling water rate from 80 to 95 vol % (Qfront) of a standard water density when the front part region passes so that the amount of cooling water becomes the standard water density when a boundary part of the front part region and a center part region arrives, and continuing spraying by the standard water density while the center part region is passing, then, at a rear stage part of the cooling apparatus, spraying by making the amount of cooling water 80 to 95 vol % of the standard water density while the front end region of the steel plate is passing, successively increasing the amount of cooling water rate from 80 to 95 vol % of the standard water density when the front part region passes so that the amount of cooling water becomes the standard
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: October 9, 2012
    Assignee: Nippon Steel Corporation
    Inventor: Tomoya Oda
  • Patent number: 8257513
    Abstract: The present invention provides a high strength steel sheet with 780 MPa class tensile strength excellent in bending workability and fatigue strength. The high strength steel sheet is (1) a steel sheet whose steel composition contains: C: 0.05-0.20%; Si: 0.6-2.0%; Mn: 1.6-3.0%; P: 0.05% or below; S: 0.01% or below; Al: 0.1% or below; and N: 0.01% or below, the balance comprising iron and inevitable impurities, in which (2) a microstructure comprises a polygonal ferrite structure and a structure formed by low-temperature transformation, in which, when a sheet plane located at a depth of 0.1 mm from a surface of the steel sheet is in the observation under a scanning electron microscope with respect to twenty sights in total in different positions in the sheet-width direction, the maximum value of the areal proportion of the polygonal ferrite (Fmax) and the minimum value of the areal proportion of the ferrite (Fmin) in a 50 ?m×50 ?m area in each sight satisfy Fmax?80%, Fmin?10%, and Fmax?Fmin?40%.
    Type: Grant
    Filed: May 28, 2008
    Date of Patent: September 4, 2012
    Assignee: Kobe Steel, Ltd.
    Inventors: Michiharu Nakaya, Tetsuji Hoshika
  • Patent number: 8246767
    Abstract: The invention relates to a composition and heat treatment for a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650° C. The novel combination of composition and heat treatment produces a heat treated material containing both large primary titanium carbides and small secondary titanium carbides. The primary titanium carbides contribute to creep strength while the secondary titanium carbides act to maintain a higher level of chromium in the finished steel for increased oxidation resistance, and strengthen the steel by impeding the movement of dislocations through the crystal structure. The heat treated material provides improved performance at comparable cost to commonly used high-temperature steels such as ASTM P91 and ASTM P92, and requires heat treatment consisting solely of austenization, rapid cooling, tempering, and final cooling, avoiding the need for any hot-working in the austenite temperature range.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: August 21, 2012
    Assignee: The United States of America, as represented by the United States Department of Energy
    Inventors: Paul D. Jablonski, David Alman, Omer Dogan, Gordon Holcomb, Christopher Cowen
  • Patent number: 8066828
    Abstract: A method for heat treatment of steel and a system thereof is provided. First the steel is austenitized at a suitable temperature and then the temperature is rapidly brought down to the austempering temperature. Here the cyclic austempering is carried out between two austempering temperatures by modulating the temperature with controlled heating and cooling and the controlled temperature modulation is obtained by controlling the temperature-time profile in a batch furnace or by controlling the zone temperatures in a continuous furnace. This method of cyclic austempering reduces the austempering time, reduces the energy consumption and emissions, enhances the productivity and reduces the process cost.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: November 29, 2011
    Assignees: Tata Consultancy Services, Ltd., Illinois Institute of Technology
    Inventors: Philip Nash, Vivekanand Sista, Satyam Sahay
  • Patent number: 8066830
    Abstract: A method for the production of steels is provided. A heat treatment is carried out, in which the steel is hardened in water twice at different high temperatures, and subsequently subjected to an annealing treatment. It has been shown that the steel 26NiCrMoV14-5 has a high subzero toughness. In one aspect, the steel is usable down to a temperature of at least minus 170° C.
    Type: Grant
    Filed: September 13, 2006
    Date of Patent: November 29, 2011
    Assignee: Siemens Aktiengesellschaft
    Inventors: Ralf Bode, Beate Langenhan
  • Patent number: 8021502
    Abstract: A martensitic stainless steel pipe, which comprises specified quantities of C, Si, Mn, P, S, Cr, Ni, Al, N, Cu, Ti, V, Mo, Nb, B and Ca, and the balance being Fe and impurities, has satisfactory toughness at a high strength of 650 MPa or more by yield strength and also excellent hot workability. Therefore, it can be used as a high-strength martensitic stainless steel pipe for carbon dioxide gas corrosion resistant use, to be used in oil and/or gas well environments containing no hydrogen sulfide but carbon dioxide gas. This high-strength martensitic stainless steel pipe is an inexpensive martensitic stainless steel pipe, which does not require an addition of large quantities of expensive elements such as Ni and Mo, and moreover does not require the control of the content of P to a value less than 0.010% by mass.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: September 20, 2011
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Mutsumi Tanida, Nobuyuki Mori, Keiichi Nakamura
  • Patent number: 8016954
    Abstract: A transformation toughened, high-strength steel alloy useful in plate steel applications achieves extreme fracture toughness (Cv & gt; 80 ft-lbs corresponding to KId & equals; 200 ksi.in½) at strength levels of 150-180 ksi yield strength, is weldable and formable. The alloy is characterized by dispersed austenite stabilization for transformation toughening to a weldable, bainitic plate steel and is strengthened by precipitation of M2C carbides in combination with copper and nickel. The desired microstructure is a matrix containing a bainite-martensite mix, BCC copper and M2C carbide particles for strengthening with a fine dispersion of optimum stability austenite for transformation toughening. The bainite-martensite mix is formed by air-cooling from solution treatment temperature and subsequent aging at secondary hardening temperatures to precipitate the toughening and strengthening dispersions.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: September 13, 2011
    Assignee: Northwestern University
    Inventors: Arup Saha, Gregory B. Olson
  • Patent number: 7972452
    Abstract: A method continuously creates a bainite structure in a carbon steel, especially a strip steel by austenitizing the carbon steel; introducing the austenitized carbon steel into a bath containing a quenching agent; adjusting the carbon steel to the transformation temperature for bainite and maintaining the transformation temperature for a certain period of time; and then cooling the carbon steel. The carbon steel stays in the bath until a defined percentage of the bainite structure relative to the total structure of the carbon steel has formed. Residues of the quenching agent are removed from the surface of the carbon steel by blowing the same off when the carbon steel is discharged from the bath, and the remaining structure components of the carbon steel are then transformed into bainite in an isothermal tempering station without deflecting the carbon steel at all.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: July 5, 2011
    Assignees: C.D. Wälzholz GmbH, Ebner Industrieofenbau GmbH
    Inventors: Werner Kaiser, Heinz Höfinghoff, Hans-Toni Junius, Michael Hellmann, Peter Ebner, Heribert Lochner
  • Patent number: 7905967
    Abstract: The occurrence of delayed fracture which is found in a hot worked martensitic stainless steel is prevented by subjecting the steel, after hot working and prior to heat treatment for hardening by quenching from a temperature of at least Ac1 point of the steel, to preliminary softening heat treatment under such conditions that the softening parameter P defined below is at least 15,400 and the softening temperature T is lower than the Ac1 point: P(softening parameter):P=T(20+log t) T: softening temperature [K] t: duration of softening treatment [Hr]. The present invention is particularly effective for a martensitic stainless steel having a steel composition in which the amount of effective dissolved C and N (=[C*+10N*]) where C* and N* are calculated by the following formulas is larger than 0.45: C*=C?[12{(Cr/52)×(6/23)}/10, and N*=N?[14{(V/51)+(Nb/93)}/10]?[14{(Ti/48)+(B/11)+(Al/27)}/10].
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: March 15, 2011
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventor: Nobuyuki Mori
  • Publication number: 20100282377
    Abstract: A method for treating high-strength, low-alloy steel includes controlling material responses, such as the crystal structure of the steel, through various processing steps. More specifically, the method includes cold treating the steel to achieve predictable increases in a minimum ultimate tensile strength or desired changes in the crystal structure of the steel. In one embodiment, cold treating the steel operates to controllably increase the minimum ultimate tensile strength of the steel within increasing a specified maximum ultimate tensile strength of the steel. Stated otherwise, cold treating the steel may reduce or narrow a minimum-to-maximum ultimate tensile strength range such that the minimum ultimate tensile strength is closer to the specified maximum ultimate tensile strength.
    Type: Application
    Filed: May 6, 2009
    Publication date: November 11, 2010
    Applicant: Goodrich Corporation
    Inventor: Edward B. Evans
  • Patent number: 7828912
    Abstract: This invention provides a high-strength hot-rolled steel sheet having strength of at least 980 N/mm2 at a sheet thickness of from about 1.0 to about 6.0 mm and excellent in hole expandability, ductility and ability of phosphate coating, which steel sheet is directed to automotive suspension components that are subjected to pressing. The high-strength hot-rolled steel sheet contains, in terms of a mass %, C: 0.01 to 0.09%, Si: 0.05 to 1.5%, Mn: 0.5 to 3.2%, Al: 0.003 to 1.5%, P: 0.03% or below, S: 0.005% or below, Ti: 0.10 to 0.25%, Nb: 0.01 to 0.05% and the balance consisting of iron and unavoidable impurities; satisfies all of the following formulas <1> to <3>: 0.9?48/12×C/Ti<1.7??<1> 50,227×C?4,479×Mn>?9,860??<2> 811×C+135×Mn+602×Ti+794×Nb>465??<3>, and has strength of at least 980 N/mm2.
    Type: Grant
    Filed: December 26, 2003
    Date of Patent: November 9, 2010
    Assignee: Nippon Steel Corporation
    Inventors: Riki Okamoto, Hirokazu Taniguchi, Masashi Fukuda
  • Patent number: 7718018
    Abstract: A method of cooling both surfaces of steel plate, which stably secures precision of cooling control from a start of cooling to an end so as to uniformly cool the top and bottom surfaces of the steel plate and thereby stably secures the steel plate quality and cools the steel plate down to a target temperature with a good precision. The method comprises dividing a steel plate cooling region into at least a spray impact part region and a spray non-impact part region, predicting a heat transfer coefficient for each divided region in advance, computing a predicted temperature history of the steel plate based on this predicted value, and setting and controlling amounts of sprayed coolant on the spray impact part regions by top and bottom surface nozzles.
    Type: Grant
    Filed: July 25, 2007
    Date of Patent: May 18, 2010
    Assignee: Nippon Steel Corporation
    Inventors: Yoshihiro Serizawa, Ryuji Yamamoto, Shigeru Ogawa
  • Patent number: 7713362
    Abstract: A method for producing a plate of steel which is resistant to abrasion and whose chemical composition includes, by weight: 0.24%?C<0.35%; 0%?Si?2%; 0%?Al?2%; 0.5%?Si+Al?2%; 0%?Mn?2.5% 0%?Ni?5%; 0%?Cr?<5% 0%?Mo?1%; 0%?W?2%; 0.1%?Mo+W/2?1%; 0%?B?0.02%; 0%?Ti?1.1%; 0%?Zr?2.2%; 0.35%<Ti+Zr/2?1.1%; 0%?S?0.15%; N<0.03%, optionally up to 1.5% of copper; optionally at least one element selected from Nb, Ta and V at contents such that Nb/2 +Ta/4+V?0.5%; optionally at least one element selected from among Se, Te, Ca, Bi, Pb at contents which are less than or equal to 0.1%; and the balance being iron and impurities resulting from the production operation. The chemical composition further complying with the following relationships: C*=C?Ti/4?Zr/8+7×N/8?0.095% and 1.05×Mn+0.54×Ni+0.50×Cr+0.3×(Mo+W/2)1/2+K>1.8 with: K=0.5 if B?0.0005% and K=0 if B<0.0005%.
    Type: Grant
    Filed: November 13, 2003
    Date of Patent: May 11, 2010
    Assignee: Industeel Creusot
    Inventors: Jean Beguinot, Jean-Georges Brisson
  • Patent number: 7662247
    Abstract: The invention provides a Martensite wear-resistant cast steel with film Austenite for enhancement of toughness comprises 0.25˜0.34 wt % C, 1.40˜2.05 wt % Si, 0.90˜1.20 wt % Mn, 1.80˜2.50 wt % Cr, 0.0005˜0.005 wt % B, 0.01˜0.06 wt % Ti, 0.015˜0.08 wt % Rare Earth, 0.015˜0.06 wt % Al, less than 0.035 wt % S, less than 0.035 wt % P, and the balance of iron. The method of producing the cast steel includes smelting and heat-treatment, after smelting as normal operation, adding Ferro-Rare Earth and Ferro-Boron in the ladle in sequence, then high temperature normalizing, water quenching and low temperature tempering. TEM structure of the cast steel is martensite lath with film austenite between martensite laths. Cast steel of the invention exhibits high hardenability and toughness, and low cost without precious Molybdenum and Nickel, applied to a range of wear-resistant castings, especially to heavy-section castings, i.e. heavy-section tooth.
    Type: Grant
    Filed: May 29, 2006
    Date of Patent: February 16, 2010
    Assignee: Ningbo Zhedong Precision Casting Co., Ltd.
    Inventor: Kaihua Hu
  • Patent number: 7485197
    Abstract: In a martensitic stainless steel tube according to the present invention, the content is determined by each of elements C, Si, Mn and Cr, and the bubble content ratio is further prescribed in accordance with the scale thickness on the outer surface of the steel tube, so that defects can be detected with high precision in the non-destructive inspection, such as ultrasonic test or the like. This allows the non-destructive inspection to be carried out with high efficiency. Moreover, there is another advantage that the weather resistance can be enhanced. The steel tube according to the present invention and the manufacturing method thereof can be suitably used in all of the technical fields in which a martensitic stainless steel tube having equal chemical composition is treated.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: February 3, 2009
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventor: Mutsumi Tanida
  • Patent number: 7462251
    Abstract: The invention concerns a method for making an abrasion-resistant steel part consisting of 0.1%?C?0.23%; 0%?Si?2%; 0%?AI?2%; 0.5%?Si+AI?2%; 0%?Mn?2.5%; 0%?Ni?5%; 0%?Cr?5%; 0%?Mo?1%; 0%?W?2%; 0.05%?Mo+W/2?1%; 0%?B?0.02%; 0%?Ti?0.67%; 0%?Zr?1.34%; 0.05%?Ti+Zr/2?0.67%; 0%?S?0.15%; N<0.030, optionally 0% to 1.5% of Cu; optionally Nb, Ta and V such that Nb/2+Ta/4+V?0.5 %; optionally Se, Te, Ca, Bi, Pb contents ?0.1%; the rest being iron and impurities. Additionally: 0.095%?C*=C?Ti/4?Zr/8+7×N/8, Ti+Zr/2?7×N/2?0.05% and 1.05×Mn+0.54×Ni+0.5O×Cr+0.3×(Mo++W1/2)1/2+K>1.8, with K=1 if B?0.0005% and K=0 if B<0.0005%. After austenitization, the method consists in: cooling at a speed >0.5° C./s between AC3 and T=800?270×C*?90×Mn?37×Ni?70×Cr?83×(Mo+W/2) and about T?50° C.; then cooling at a speed 0.1<Vr<150×ep?1.7 between T and 100° C., (ep=thickness of plate in mm); cooling down to room temperature and optionally planishing. The invention also concerns the resulting plate.
    Type: Grant
    Filed: November 13, 2003
    Date of Patent: December 9, 2008
    Assignee: USINOR
    Inventors: Jean Beguinot, Jean-Georges Brisson
  • Patent number: 7459041
    Abstract: The invention concerns a method for making an abrasion resistant steel plate having a chemical composition comprising: 0.35%?C?0.8%, 0%?Si?2%; 0%?AI?2%; 0.35%?Si+AI?2%; 0%?Mn?2.5%; 0%?Ni?5%; 0% ?Cr?5%; 0%?Mo?0.050; 0%?W?1%; 0,1%?Mo+W/2?0.5%; 0%?B?0.02%; 0%?Ti?2%; 0%?Zr?4%; 0.05%?Ti+Zr/2?2%; 0%?S?0.15%; N?0,03; optionally 0% to 1.5% of Cu; optionally Nb, Ta or V with Nb/2+Ta/4 +V?0.5%; optionally less than 0.1% of Se, Te, Ca, Bi or Pb; the rest being iron and impurities; the composition satisfying: 0.1 %<C*=C?Ti/4?Zr/8+7×N/8?0.55% and 1.05×Mn+0.54×Ni+0.5O×Cr+0.3×(Mo+W/2)1/2+K>1.8, with K=0.5 if B ?0.0005% and K=0 if B<0.0005% and Ti+Zr/2?7×N/2?0.05%; hardening after austenitization while cooling at a speed >0.5 ° C./s between a temperature >AC3 and ranging between T=800?270×C*?9O×Mn?37×Ni?70×Cr?83×(Mo+W/2) and T?50° C.; then at a core speed Vr<1150×ep?1.7 between T and 100° C., (ep=plate thickness in mm); cooling down to room temperature. The invention also concerns the resulting plate.
    Type: Grant
    Filed: November 13, 2003
    Date of Patent: December 2, 2008
    Assignee: Industeel Creusot
    Inventors: Jean Beguinot, Jean-Georges Brisson
  • Publication number: 20080190522
    Abstract: A method for the heat treatment of workpieces made of steel or cast iron involves quenching the workpiece to a temperature above the martensite starting temperature (i.e., the temperature below which martensite is formed) after a holding period at or above the austenitizing temperature. In the ensuing time period, austenite is transformed into bainite. The temperature of the workpiece is reduced during the time period when transformation occurs and the transformation of austenite into bainite is thus continued.
    Type: Application
    Filed: July 30, 2005
    Publication date: August 14, 2008
    Applicant: AB SKF
    Inventors: Johann Volkmuth, Martin Goebel
  • Patent number: 7393422
    Abstract: The high carbon steel wire rod contains 0.65% to 1.20% of C, 0.05% to 1.2% of Si, 0.2% to 1.0% of Mn, and 0.35% or less (including 0%) of Cr, further contains P and S each in an amount restricted to 0.02% or less, where 80% or more of the metal structure is constituted by a pearlite structure; and an average tensile strength TS and an average lamellar spacing ? of the high carbon steel wire rod show the relation of TS?8700/?{square root over ( )}(?/Ceq)+290 in which Ceq=% C+% Mn/5+% Cr/4. The high carbon steel wire rod can omit a patenting treatment before or during wire drawing, is superior in wire drawability, and exhibits a low drawing resistance in a wire drawing die in an as-hot-rolled state.
    Type: Grant
    Filed: December 28, 2004
    Date of Patent: July 1, 2008
    Assignee: Kobe Steel, Ltd.
    Inventor: Mamoru Nagao
  • Patent number: 7214278
    Abstract: A carbon steel alloy that exhibits the combined properties of high strength, ductility, and corrosion resistance is one whose microstructure contains ferrite regions combined with martensite-austenite regions, with carbide precipitates dispersed in the ferrite regions but without carbide precipitates are any of the interfaces between different phases. The microstructure thus contains of four distinct phases: (1) martensite laths separated by (2) thin films of retained austenite, plus (3) ferrite regions containing (4) carbide precipitates. In certain embodiments, the microstructure further contains carbide-free ferrite regions.
    Type: Grant
    Filed: December 29, 2004
    Date of Patent: May 8, 2007
    Assignee: MMFX Technologies Corporation
    Inventors: Grzegorz J. Kusinski, Gareth Thomas
  • Patent number: 7037383
    Abstract: A process for producing a component of metal includes a) carrying out a heat treatment to harden the component, which ends with a heating process, especially with a tempering or microstructural transformation process, at a given temperature (TE); b) carrying out at least machining of the component at room temperature (TU) in order to provide its desired geometrical shape; and c) subsequent heating of the component to a temperature (T) which is greater than room temperature (TU).
    Type: Grant
    Filed: February 25, 2003
    Date of Patent: May 2, 2006
    Assignee: AB SKF
    Inventor: Jürgen Gegner
  • Patent number: 6863749
    Abstract: A method of post-solidification processing to minimize the content of extremely coarse grain-refining precipitates that may form during solidification is low-alloy and alloy high-strength steels containing approximately 0.09-0.17% by weight C so as to provide improved toughness in a wrought and heat-treated product. The method entails cooling an as-cast steel at a reduced rate in a furnace held at a temperature in excess of the equilibrium solution temperature for AlN in austenite. The steel is maintained at this temperature for a sufficient amount of time to effect the dissolution of coarse AlN precipitates in the microstructure, and the so-treated steel is then cooled at any desired rate to room temperature or to a hot-rolling temperature.
    Type: Grant
    Filed: July 26, 2000
    Date of Patent: March 8, 2005
    Assignee: The Timken Company
    Inventor: Michael J. Leap
  • Patent number: 6821364
    Abstract: The invention concerns a method for making a multiphase hot-rolled steel strip comprising an ultra-fast cooling operations, which consists in carrying out said ultra-fast cooling operation after controlled slow cooling of the strip on a conventional slow cooling table of the rolling mill. The controlled cooling constitutes a first slow cooling, at the output of the finishing mill, from an end-of-roll temperature to an intermediate temperature of about 750° C. to 500° C.; said first cooling determines the fraction of the first phase (ferrite) in the steel. The ultra-fast cooling (>150° C./s), which solidifies the resulting structure, lowers the temperature of the strip down to a coiling temperature, ranging between about 600° C. and room temperature, at which a second slow cooling is performed which results if the formation of the second phase (bainite or martensite).
    Type: Grant
    Filed: September 19, 2002
    Date of Patent: November 23, 2004
    Assignee: Centre de Recherches Metallurgiques A.S.B.L.
    Inventors: Xavier Cornet, Jean-Claude Herman
  • Publication number: 20040187974
    Abstract: The invention relates to a method for producing especially shape-rolled products from rail steels that have a finely perlitic and/or ferritic/perlitic structure after cooling. The inventive method is characterized by guiding the workpiece through a cooling stretch that is composed of individual independent cooling modules (2a-e) having independently adjustable cooling parameters.
    Type: Application
    Filed: January 26, 2004
    Publication date: September 30, 2004
    Inventors: Klaus Kuppers, Meinert Meyer, Thomas Nerzak, Uwe Plociennik
  • Publication number: 20030221754
    Abstract: Carbon steels of high performance are disclosed that contain a three-phase microstructure consisting of grains of ferrite fused with grains that contain dislocated lath structures in which laths of martensite alternate with thin films of austenite. The microstructure can be formed by a unique method of austenization followed by multi-phase cooling in a manner that avoids bainite and pearlite formation and precipitation at phase interfaces. The desired microstructure can be obtained by casting, heat treatment, on-line rolling, forging, and other common metallurgical processing procedures, and yields superior combinations of mechanical and corrosion properties.
    Type: Application
    Filed: March 31, 2003
    Publication date: December 4, 2003
    Applicant: MMFX Technologies Corporation, a corporation of the state of California
    Inventors: Grzegorz J. Kusinski, David Pollack, Gareth Thomas
  • Patent number: 6641931
    Abstract: The present invention aims to produce a cold rolled metal coated multi-phase steel, characterized by a tensile strength of at least 500 MPa, a yield ratio (Re/Rm) lower than 0.65 in skinned conditions, lower than 0.60 in unskinned conditions, and with good metal coating adhesion behavior. In the case of the aluminized steel according to the invention, the steel also has superior resistance to temperature corrosion up to 900° C. and excellent mechanical properties at this high temperature. The hot metal coated steel product having a steel composition with a manganese content lower than 1.5%, chrome content between 0.2 and 0.5%, molybdenum content between 0.1 and 0.25%, and a relation between the chrome and molybdenum content as follows Cr+2 Mo higher than or equal to 0.7%, undergoes a thermal treatment in the hot dip metal coating line defined by a soaking temperature between Ac1 and Ac3, a primary cooling speed higher than 25° C./sec and a secondary cooling speed higher than 4° C./sec.
    Type: Grant
    Filed: December 8, 2000
    Date of Patent: November 4, 2003
    Assignee: Sidmar N.V.
    Inventors: Serge Claessens, Dirk Vanderschueren
  • Patent number: 6632303
    Abstract: A grinding ball having a 55 to 65 Rockwell C hardened outer shell of tempered martensite is adapted for use in a heavy duty grinding environment by stress relieving to stabilize the ball against break-up and/or spalling.
    Type: Grant
    Filed: January 10, 2001
    Date of Patent: October 14, 2003
    Assignee: Stelco Inc.
    Inventor: Christian Albert Jager
  • Publication number: 20030041933
    Abstract: The invention concerns a method for making a multiphase hot-rolled steel strip comprising an ultra-fast cooling operations, which consists in carrying out said ultra-fast cooling operation after controlled slow cooling of the strip on a conventional slow cooling table of the rolling mill. The controlled cooling constitutes a first slow cooling, at the output of the finishing mill, from an end-of-roll temperature to an intermediate temperature of about 750° C. to 500° C.; said first cooling determines the fraction of the first phase (ferrite) in the steel. The ultra-fast cooling (>150° C./s), which solidifies the resulting structure, lowers the temperature of the strip down to a coiling temperature, ranging between about 600° C. and room temperature, at which a second slow cooling is performed which results if the formation of the second phase (bainite or martensite).
    Type: Application
    Filed: September 19, 2002
    Publication date: March 6, 2003
    Inventors: Xavier Cornet, Jean-Claude Herman
  • Publication number: 20030034101
    Abstract: A low-alloy heat-resistant steel may be used to manufacturing a large element which has uniform superior high temperature properties through a surface layer to a center part. The low-alloy heat-resistant steel comprises carbon in an amount of 0.20 to 0.35% by weight, silicon in an amount of 0.005 to 0.35% by weight, manganese in an amount of 0.05 to 1.0% by weight, nickel in an amount of 0.05 to 0.3% by weight, chromium in an amount of 0.8 to 2.5% by weight, molybdenum in an amount of 0.1 to 1.5% by weight, tungsten in an amount of 0.1 to 2.5% by weight, vanadium in an amount of 0.05 to 0.3% by weight, phosphorus in an amount not greater than 0.012% by weight, sulfur in an amount not greater than 0.005% by weight, copper in an amount not greater than 0.10% by weight, aluminum in an amount not greater than 0.01% by weight, arsenic in an amount not greater than 0.01% by weight, tin in an amount not greater than 0.01% by weight, antimony in an amount not greater than 0.
    Type: Application
    Filed: March 4, 2002
    Publication date: February 20, 2003
    Applicant: MITSUBISHI HEAVY INDUSTRIES LTD.
    Inventors: Masatomo Kamada, Akitsugu Fujita, Yoshiyuki Ooba, Yoshihiro Okamura, Makoto Yamaguchi
  • Publication number: 20030019548
    Abstract: A method for cooling hot reduced iron briquettes at low cost without degrading the strength is provided. The method includes a primary cooling step of cooling the hot reduced iron briquettes by steam at a cooling rate of 4.0° C./s or less, a secondary cooling step of cooling the reduced iron briquettes by steam and sprayed water at a cooling rate of 4.0° C./s or less, and a final cooling step of cooling the reduced iron briquettes by sprayed water at a cooling rate of 3.5° C./s or more to a temperature in a final product temperature range. The steam generated by evaporation of sprayed water during the final cooling step is used in the primary and/or secondary cooling step.
    Type: Application
    Filed: June 26, 2002
    Publication date: January 30, 2003
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Yoshiyuki Miyagawa, Katsuhiro Tanaka
  • Patent number: 6423426
    Abstract: A steel sheet having a composition comprising C: 0.05-0.20 mass %, Si: 0.3-1.8 mass %, Mn: 1.0-3.0 mass %, Fe of the balance and inevitable impurities is subjected to a primary step of primary heat treatment and subsequent rapid cooling to Ms point or lower, a secondary step of secondary heat treatment and subsequent rapid cooling, and a tertiary step of galvanizing treatment and rapid cooling, so as to turn the structure of the steel sheet into a composite structure of 20% or more by volume of tempered martensite, 2% or more by volume of retained austenite, ferrite and a low-temperature transformation phase. A galvanized layer is deposited on the surface of the steel sheet. It is preferred to cool the steel sheet to 300° C. at a cooling rate of 5 ° C./sec. or more after the galvanizing treatment. After the galvanizing treatment, alloying treatment may be conducted.
    Type: Grant
    Filed: March 5, 2001
    Date of Patent: July 23, 2002
    Assignee: Kawasaki Steel Corporation
    Inventors: Takashi Kobayashi, Kei Sakata, Akio Shinohara
  • Patent number: 6387195
    Abstract: Large sections of solution annealed, precipitation hardenable alloys which are resistant to internal cracking yet fully hardenable can be produced if, during rapid quenching, the temperature of the section is allowed to stabilize immediately above the alloy's solvus temperature before the section is rapidly quenched. Preferably, the temperature of the section is allowed to stabilize a second time, this time at an elevated temperature not so high that significant phase changes occur, before the section is cooled to ambient.
    Type: Grant
    Filed: November 3, 2000
    Date of Patent: May 14, 2002
    Assignee: Brush Wellman, Inc.
    Inventors: William J. Bishop, Noel M. Brady, Walter R. Cribb, Anatoly A. Offengenden
  • Patent number: 6355119
    Abstract: In a heat treatment method for producing boundary layer-hardened long products and flat products of unalloyed or low-alloy steel, the workpiece is cooled for producing a martensitic grain within a boundary layer of the workpiece by repeating several sequential cooling process steps. Each sequential cooling process step has a cooling phase, in which the workpiece is cooled to a temperature below a martensite starting temperature for martensitic conversion of only a portion of the boundary layer of the workpiece, and a temporal stress-relief phase for relieving stress within already formed martensitic grain areas and already formed martensite/austenite boundary areas. Subsequently, the workpiece is cooled at a cooling rate below a lower critical cooling rate for cooling the workpiece core.
    Type: Grant
    Filed: May 5, 2000
    Date of Patent: March 12, 2002
    Assignee: SMS Schloemann-Siemag Aktiengesellschaft
    Inventors: Andreas Peters, Meinert Meyer