With Ageing, Solution Treating (i.e., For Hardening), Precipitation Hardening Or Strengthening Patents (Class 148/685)
  • Patent number: 11380458
    Abstract: A covered electrical wire comprises a conductor and an insulating covering layer provided outside the conductor, the conductor being a stranded wire composed of a plurality of copper alloy wires composed of a copper alloy and twisted together, and has a wire diameter of 0.5 mm or less, the copper alloy containing Ni, or Ni and Fe in an amount of 0.1% by mass or more and 1.6% by mass or less in total, and P in an amount of 0.05% by mass or more and 0.7% by mass or less, with a balance being Cu and impurities, in the copper alloy, a ratio of precipitation of P to solid solution of P being 1.1 or more.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: July 5, 2022
    Assignees: Sumitomo Electric Industries, Ltd., Sumitomo Wiring Systems, Ltd., AutoNetworks Technologies, Ltd.
    Inventors: Kei Sakamoto, Akiko Inoue, Tetsuya Kuwabara, Yusuke Oshima, Minoru Nakamoto, Kazuhiro Nanjo, Taichiro Nishikawa, Yoshihiro Nakai, Kazuhiro Goto, Ryo Toyoshima, Yasuyuki Otsuka, Fumitoshi Imasato, Hiroyuki Kobayashi
  • Patent number: 9702027
    Abstract: The invention relates to a copper alloy, composed of (in wt %): 51.8 to 84.0% Cu, 15.5 to 36.0% Zn, 0.35 to 3.0% Sn, 0.12 to 1.5% Fe, 0.02 to 1.0% P, optionally also 0.1 to 2.0% Al, optionally also 0.05 to 0.7% Si, optionally also 0.05 to 2.0% Ni, optionally also respectively 0.1 to 1.0% Mn, Co, optionally also respectively 0.01 to 1.0% As, Sb, and unavoidable contaminants, wherein more than 95% of the structure consist of ?-mixed crystal, in which at least iron phosphides and/or iron are embedded as deposition particles, which can be used for metallic articles in breeding organisms living in seawater.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: July 11, 2017
    Assignee: WIELAND-WERKE AG
    Inventors: Andrea Kaeufler, Jochen Aufrecht
  • Patent number: 9493858
    Abstract: A copper alloy subjected to a thermo-mechanical treatment and composed of (in wt %) 15.5 to 36.0% Zn, 0.3 to 3.0% Sn, 0.1 to 1.5% Fe, optionally 0.001 to 0.4% P, optionally 0.01 to 0.1% Al, optionally 0.01 to 0.03% Ag, Mg, Zr, In, Co, Cr, Ti, Mn, optionally 0.05 to 0.5% Ni, the remainder being copper and unavoidable contaminants, wherein the microstructure of the alloy is characterized in that the proportions of the main texture orientations are at least 10 vl % copper orientation, at least 10 vl % S/R orientation, at least 5 vl % brass orientation, at least 2 vl % Goss orientation, at least 2 vl % 22RD-cube orientation, at least 0.5 vl % cube orientation, and finely distributed iron-containing particles are contained in the alloy matrix.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: November 15, 2016
    Assignee: WIELAND-WERKE AG
    Inventors: Hans-Achim Kuhn, Andrea Kaeufler, Stefan Gross
  • Publication number: 20150144235
    Abstract: A copper alloy trolley wire includes: 0.12 mass % to 0.40 mass % of Co; 0.040 mass % to 0.16 mass % of P; 0.005 mass % to 0.70 mass % of Sn; and the balance including Cu and unavoidable impurities, wherein precipitates have an average grain size of equal to or greater than 10 nm, and the number of precipitates having a grain size of equal to or greater than 5 nm is 90% or greater of the total number of observed precipitates, and a heat resistance HR defined by HR=TS1/TS0×100 in which TS0 is an initial tensile strength and TS1 is a tensile strength after holding the copper alloy trolley wire at 400° C. for 2 hours, is equal to or greater than 90%.
    Type: Application
    Filed: July 31, 2012
    Publication date: May 28, 2015
    Applicants: MITSUBISHI MATERIALS CORPORATION, MITSUBISHI CABLE INDUSTRIES, LTD.
    Inventors: Tetsuya Ashida, Kouji Hashimoto, Hitoshi Nakamoto, Norikazu Ishida
  • Publication number: 20150136281
    Abstract: A copper alloy wire of the present invention consists of a precipitation strengthening type copper alloy containing Co, P, and Sn, wherein an average grain size of precipitates observed through cross-sectional structure observation immediately after performing an aging heat treatment is equal to or greater than 15 nm and a number of precipitates having grain sizes of equal to or greater than 5 nm is 80% or higher of a total number of observed precipitates, and the copper alloy wire is subjected to cold working after the aging heat treatment.
    Type: Application
    Filed: July 31, 2012
    Publication date: May 21, 2015
    Applicants: MITSUBISHI CABLE INDUSTRIES, LTD., MITSUBISHI MATERIALS CORPORATION
    Inventors: Hitoshi Nakamoto, Norikazu Ishida, Kazunari Maki, Hiroyuki Mori, Tetsuya Ashida
  • Patent number: 8951369
    Abstract: What is provided is a copper alloy for electronic/electric device comprising: in mass %, more than 2% and 36.5% or less of Zn; 0.1% or more and 0.9% or less of Sn; 0.05% or more and less than 1.0% of Ni; 0.001% or more and less than 0.10% of Fe; 0.005% or more and 0.10% or less of P; and the balance Cu and inevitable impurities, wherein a content ratio of Fe to Ni, Fe/Ni satisfies 0.002?Fe/Ni<1.5, a content ratio of a sum of Ni and Fe, (Ni+Fe), to P satisfies 3<(Ni+Fe)/P<15, a content ratio of Sn to a sum of Ni and Fe, (Ni+Fe) satisfies 0.3<Sn/(Ni+Fe)<5, an average crystal grain diameter of ? phase containing Cu, Zn, and Sn is in a range of 0.1 to 50 ?m, and the copper alloy includes a precipitate containing P and one or more elements selected from Fe and Ni.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: February 10, 2015
    Assignees: Mitsubishi Materials Corporation, Mitsubishi Shindoh Co., Ltd.
    Inventors: Kazunari Maki, Hiroyuki Mori
  • Publication number: 20140332124
    Abstract: An apparatus for manufacturing wire comprising: a wire delivering equipment, a wire winding equipment, and an annealing while running equipment installed between the wire delivering equipment and the wire winding equipment, the age-precipitation copper alloy wire being passed in such manner that the wire turns around a plurality of times along a running route in the annealing while running equipment. The current applying equipment to raise a temperature of the age-precipitation copper alloy wire by generated Joule heat may be installed at upstream side of the annealing while running equipment. Another current applying equipment for solution treatment may be installed in tandem at upstream side of the annealing while running equipment. In place of the annealing while running equipment, a current applying equipment may be connected in tandem for age-treatment. By using those equipments, age-precipitation copper alloy wire having the diameter of from 0.03 mm to 3 mm may be obtained.
    Type: Application
    Filed: July 28, 2014
    Publication date: November 13, 2014
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Isao TAKAHASHI, Keisuke Kitazato
  • Publication number: 20140311633
    Abstract: A spinodal copper-nickel-tin alloy with a combination of improved impact strength, yield strength, and ductility is disclosed. The alloy is formed by process treatment steps including solution annealing, cold working and spinodal hardening. These include such processes as a first heat treatment/homogenization step followed by hot working, solution annealing, cold working, and a second heat treatment/spinodally hardening step. The spinodal alloys so produced are useful for applications demanding enhanced strength and ductility such as for pipes and tubes used in the oil and gas industry.
    Type: Application
    Filed: April 23, 2014
    Publication date: October 23, 2014
    Applicant: Materion Corporation
    Inventors: W. Raymond Cribb, Chad A. Finkbeiner, Fritz C. Grensing
  • Publication number: 20140283963
    Abstract: A Cu—Ti based copper alloy sheet material contains, in mass %, from 2.0 to 5.0% of Ti, from 0 to 1.5% Ni, from 0 to 1.0% Co, from 0 to 0.5% Fe, from 0 to 1.2% Sn, from 0 to 2.0% Zn, from 0 to 1.0% Mg, from 0 to 1.0% Zr, from 0 to 1.0% Al, from 0 to 1.0% Si, from 0 to 0.1% P, from 0 to 0.05% B, from 0 to 1.0% Cr, from 0 to 1.0% Mn, and from 0 to 1.0% V, the balance substantially being Cu. The sheet material has a metallic texture wherein in a cross section perpendicular to a sheet thickness direction, a maximum width of a grain boundary reaction type precipitate is not more than 500 nm, and a density of a granular precipitate having a diameter of 100 nm or more is not more than 105 number/mm2.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 25, 2014
    Applicant: DOWA METAL TECH CO., LTD.
    Inventors: Weilin GAO, Motohiko Suzuki, Toshiya Kamada, Takashi Kimura, Fumiaki Sasaki, Akira Sugawara
  • Publication number: 20140116583
    Abstract: A Cu—Ni—Co—Si based copper alloy sheet material has second phase particles existing in a matrix, with a number density of ultrafine second phase particles is 1.0×109 number/mm2 or more. A number density of fine second phase particles is not more than 5.0×107 number/mm2. A number density of coarse second phase particles is 1.0×105 number/mm2 or more and not more than 1.0×106 number/mm2. The material has crystal orientation satisfying the following equation (1): I{200}/I0{200}?3.0??(1) wherein I{200} represents an integrated intensity of an X-ray diffraction peak of the {200} crystal plane on the sheet material sheet surface; and I0{200} represents an integrated intensity of an X-ray diffraction peak of the {200} crystal plane in a pure copper standard powder sample.
    Type: Application
    Filed: October 31, 2013
    Publication date: May 1, 2014
    Applicant: DOWA METALTECH CO., LTD.
    Inventors: Toshiya KAMADA, Takashi KIMURA, Weilin GAO, Fumiaki SASAKI, Akira SUGAWARA
  • Publication number: 20140087606
    Abstract: What is provided is a copper alloy for electronic/electric device comprising: in mass %, more than 2% and 36.5% or less of Zn; 0.1% or more and 0.9% or less of Sn; 0.05% or more and less than 1.0% of Ni; 0.001% or more and less than 0.10% of Fe; 0.005% or more and 0.10% or less of P; and the balance Cu and inevitable impurities, wherein a content ratio of Fe to Ni, Fe/Ni satisfies 0.002?Fe/Ni<1.5, a content ratio of a sum of Ni and Fe, (Ni+Fe), to P satisfies 3<(Ni+Fe)/P<15, a content ratio of Sn to a sum of Ni and Fe, (Ni+Fe) satisfies 0.3<Sn/(Ni+Fe)<5, an average crystal grain diameter of ? phase containing Cu, Zn, and Sn is in a range of 0.1 to 50 ?m, and the copper alloy includes a precipitate containing P and one or more elements selected from Fe and Ni.
    Type: Application
    Filed: January 4, 2013
    Publication date: March 27, 2014
    Applicants: MITSUBISHI SHINDOH CO., LTD., MITSUBISHI MATERIALS CORPORATION
    Inventors: Kazunari Maki, Hiroyuki Mori
  • Publication number: 20130230765
    Abstract: There is provided a current collector copper foil of negative electrode for lithium ion secondary battery, including: at least 0.15 wt % or more and 0.40 wt % or less of Cr; and Cu as a remaining portion, wherein a Cr solid solution index Z is in a range of 0.05?Z?0.3 and represented by the following formula: Z=(RM?RS)/(RP?RS) . . . (1), wherein RM indicates an actually measured conductivity R (% IACS) of a negative battery current collector copper foil, and RS indicates a calculated value (% IACS) of conductivity R of the negative electrode current collector copper foil 10 in a case that a total content of Cr is solid-soluted, and conductivity RP indicates a calculated conductivity R (% IACS) of the negative electrode current collector copper foil 10 in a case that the total content of Cr is separated.
    Type: Application
    Filed: December 27, 2012
    Publication date: September 5, 2013
    Applicant: HITACHI CABLE, LTD.
    Inventors: Yoshiki SAWAI, Satoshi SEKI
  • Patent number: 8444779
    Abstract: The invention provides Cu—Ni—Si—Co alloys having excellent strength, electrical conductivity, and press-punching properties. In one aspect, the invention is a copper alloy for electronic materials, containing 1.0 to 2.5 mass % of Ni, 0.5 to 2.5 mass % of Co, and 0.30 to 1.2 mass % of Si, the balance being Cu and unavoidable impurities, wherein the copper alloy for electronic material has a [Ni+Co+Si] content in which the median value ? (mass %) satisfies the formula 20 (mass %)???60 (mass %), the standard deviation ? (Ni+Co+Si) satisfies the formula ? (Ni+Co+Si)?30 (mass %), and the surface area ratio S (%) satisfies the formula 1%?S?10%, in relation to the compositional variation and the surface area ratio of second-phase particles size of 0.1 ?m or greater and 1 ?m or less when observed in a cross section parallel to a rolling direction.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: May 21, 2013
    Assignee: JX Nippon Mining & Metals Co., Ltd.
    Inventors: Naohiko Era, Hiroshi Kuwagaki
  • Patent number: 8317948
    Abstract: The invention provides Cu—Ni—Si alloys containing Co, and having excellent strength and conductivity. A copper alloy for electronic materials in accordance with the invention contains about 0.5-about 2.5% by weight of Ni, about 0.5-about 2.5% by weight of Co, about 0.30-about 1.2% by weight of Si, and the balance being Cu and unavoidable impurities, wherein the ratio of the total weight of Ni and Co to the weight of Si ([Ni+Co]/Si ratio) satisfies the formula: about 4?[Ni+Co]/Si?about 5, and the ratio of Ni to Co (Ni/Co ratio) satisfies the formula: about 0.5?Ni/Co?about 2.
    Type: Grant
    Filed: March 23, 2006
    Date of Patent: November 27, 2012
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Naohiko Era, Kazuhiko Fukamachi, Hiroshi Kuwagaki
  • Patent number: 8257515
    Abstract: A copper alloy having an improved combination of yield strength and electrical conductivity consists essentially of, by weight, from 1% to 2.5% of nickel, from 0.5% to 2.0% of cobalt, with a total nickel plus cobalt content of from 1.7% to 4.3%, from 0.5% to 1.5% of silicon with a ratio of (Ni+Co)/Si of between 3.5 and 6, and the balance copper and inevitable impurities wherein the wrought copper alloy has an electrical conductivity in excess of 40% IACS. A further increase in the combination of yield strength and electrical conductivity as well as enhanced resistance to stress relaxation is obtained by a further inclusion of up 1% of silver. A process to manufacture the alloys of the invention as well as other copper-nickel-silicon alloys includes the sequential steps of (a). casting the copper alloy; (b). hot working the cast copper-base alloy to effect a first reduction in cross-sectional area; (c).
    Type: Grant
    Filed: October 7, 2005
    Date of Patent: September 4, 2012
    Assignees: GBC Metals, LLC, Wieland-Werke, AG
    Inventors: Frank N. Mandigo, Peter W. Robinson, Derek E. Tyler, Andreas Boegel, Hans-Achim Kuhn, Frank M. Keppeler, Joerg Seeger
  • Patent number: 8211249
    Abstract: A copper base rolled alloy has a copper base alloy composition containing 0.05 percent by mass or more, and 10 percent by mass or less of at least one type of element selected from Be, Mg, Al, Si, P, Ti, Cr, Mn, Fe, Co, Ni, Zr and Sn, wherein the X-ray diffraction intensity ratio I(111)/I(200) where I(hkl) is the X-ray diffraction intensity from (hkl)plane measured with respect to a rolled surface is 2.0 or more.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: July 3, 2012
    Assignees: NGK Insulators, Ltd., Osaka University
    Inventors: Tetsuo Sakai, Naokuni Muramatsu, Koki Chiba, Naoki Yamagami
  • Patent number: 8163110
    Abstract: A superfine copper alloy wire has a copper-silver alloy wherein the superfine copper alloy wire has a final wire diameter of 0.05 mm or less, and the copper-silver alloy has a copper-silver eutectic crystal phase whose volume ratio to a whole volume of the superfine copper alloy wire is 3% or more and 20% or less.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: April 24, 2012
    Assignee: Hitachi Cable, Ltd.
    Inventors: Taikan Aoyagi, Ryohei Okada, Hiromitsu Kuroda
  • Patent number: 7976652
    Abstract: A method for producing beryllium-copper containing at least Be and Cu, includes holding the beryllium-copper for a predetermined solid solution time in a solid solution temperature range in which the Be is dissolved into the Cu, cooling the beryllium-copper at a cooling speed at which the Be remains dissolved in the Cu, applying plastic strain to a cooled beryllium-copper over multiple times in a processing temperature range in which the Be is not precipitated, and holding the beryllium-copper for a predetermined age hardening time in a precipitation temperature range in which the Be is precipitated.
    Type: Grant
    Filed: September 25, 2007
    Date of Patent: July 12, 2011
    Assignee: NGK Insulators, Ltd.
    Inventors: Taku Sakai, Naokuni Muramatsu, Koki Chiba
  • Publication number: 20100269963
    Abstract: A copper alloy material according to the present invention is characterized in that the same comprises: Ni between 2.8 mass % and 5.0 mass %; Si between 0.4 mass % and 1.7 mass %; S of which content is limited to less than 0.005 mass %; and the balance of the copper alloy material is composed of copper and unavoidable impurity, wherein a proof stress is stronger than or equal to 800 MPa, and the same is superior in bending workability and in stress relaxation resistance.
    Type: Application
    Filed: October 31, 2008
    Publication date: October 28, 2010
    Inventors: Kiyoshige Hirose, Kuniteru Mihara, Hiroshi Kaneko, Tatsuhiko Eguchi
  • Publication number: 20100059147
    Abstract: The invention includes a copper-comprising sputtering target. The target is monolithic or bonded and contains at least 99.99% copper by weight and has an average grain size of from 1 micron to 50 microns. The copper-comprising target has a yield strength of greater than or equal to about 15 ksi and a Brinell hardness (HB) of greater than about 40. The invention includes copper alloy monolithic and bonded sputtering targets consisting essentially of less than or equal to about 99.99% copper by weight and a total amount of alloying element(s) of at least 100 ppm and less than 10% by weight. The targets have an average grain size of from less than 1 micron to 50 microns and have a grain size non-uniformity of less than about 15% standard deviation (1-sigma) throughout the target. The invention additionally includes methods of producing bonded and monolithic copper and copper alloy targets.
    Type: Application
    Filed: September 22, 2008
    Publication date: March 11, 2010
    Inventors: Vladimir M. Segal, Wuwen Yi, Stephane Ferrasse, Chi tse Wu, Susan D. Strothers, Frank A. Alford, William B. Willett
  • Publication number: 20100000637
    Abstract: The present invention provides Cu—Ni—Si system alloys for electronic material that with the addition of other alloy elements minimized, simultaneously exhibits enhanced electric conductivity, strength, bendability and stress relaxation performance. There are provided Cu—Ni—Si system alloys comprising 1.2 to 3.5 mass % Ni, Si in a concentration (mass %) of ? to ¼ of Ni concentration (mass %) and the balance Cu and impurities whose total amount is 0.05 mass % or less, the Cu—Ni—Si system alloys having its configuration of crystal grains and width of a precipitate-free zone regulated so as to fall within appropriate ranges by controlling solution treatment conditions, aging treatment conditions and degree of a reduction ratio. Thus, there can be provided copper alloys strip of 55 to 62% IACS electric conductivity and 550 to 700 MPa tensile strength, being free from cracking at 180° bending test of 0 radius and exhibiting a stress relaxation ratio, as measured on heating at 150° C. for 1000 hr, of 30% or less.
    Type: Application
    Filed: September 21, 2007
    Publication date: January 7, 2010
    Applicant: Nippon Mining & Metals Co., Ltd.
    Inventor: Takaaki Hatano
  • Publication number: 20090229715
    Abstract: An apparatus for manufacturing wire comprising: a wire delivering equipment, a wire winding equipment, and an annealing while running equipment installed between the wire delivering equipment and the wire winding equipment, the age-precipitation copper alloy wire being passed in such manner that the wire turns around a plurality of times along a running route in the annealing while running equipment. The current applying equipment to raise a temperature of the age-precipitation copper alloy wire by generated Joule heat may be installed at upstream side of the annealing while running equipment. Another current applying equipment for solution treatment may be installed in tandem at upstream side of the annealing while running equipment. In place of the annealing while running equipment, a current applying equipment may be connected in tandem for age-treatment. By using those equipments, age-precipitation copper alloy wire having the diameter of from 0.03 mm to 3 mm may be obtained.
    Type: Application
    Filed: March 5, 2009
    Publication date: September 17, 2009
    Applicant: THE FURUKAWA ELECTRIC CO., LTD.
    Inventors: Isao TAKAHASHI, Keisuke KITAZATO
  • Publication number: 20090202861
    Abstract: A copper-based deposited alloy strip for a contact material has a maximum value of a difference not larger than 100 MPa among three of tensile strengths, that are a tensile strength in a rolling direction thereof, a tensile strength in a direction crossing the rolling direction with an angle of 45 degrees, and a tensile strength in a direction crossing the rolling direction with an angle of 90 degrees. A process for producing the copper-based deposited alloy strip for a contact material includes the steps of: performing a solution heated treatment on a copper alloy strip; and performing an aging heat treatment on the copper alloy strip.
    Type: Application
    Filed: September 13, 2007
    Publication date: August 13, 2009
    Inventors: Kuniteru Mihara, Masato Ohno, Naofumi Tokuhara, Tatsuhiko Eguchi
  • Publication number: 20090165899
    Abstract: A copper base rolled alloy has a copper base alloy composition containing 0.05 percent by mass or more, and 10 percent by mass or less of at least one type of element selected from Be, Mg, Al, Si, P, Ti, Cr, Mn, Fe, Co, Ni, Zr, and Sn, wherein the X-ray diffraction intensity ratio I(111)/I(200) of (hkl)plane measured with respect to a rolled surface is 2.0 or more.
    Type: Application
    Filed: December 23, 2008
    Publication date: July 2, 2009
    Applicants: NGK Insulators, Ltd., Osaka University
    Inventors: Tetsuo Sakai, Naokuni Muramatsu, Koki Chiba, Naoki Yamagami
  • Publication number: 20090120544
    Abstract: An object of the present invention is to provide a strengthened alpha brass having a good balance between high offset yield strength and formability without deteriorated stress relaxation resistance in comparison with conventional brass and a manufacturing method of the strengthened alpha brass. In order to achieve this object, a strengthened alpha brass having a composition of 63 wt % to 75 wt % copper, incidental impurities and the balance zinc; the strengthened alpha brass which is obtained by using a starting plate material subjected to a re-crystallization annealing to have a grain size from 1-micron meter to 2-micron meter followed by cold rolling in 5% to 40% reduction, then the plate material is low temperature annealed at a temperature equal to or higher than the temperature at which a 0.2% offset yield strength exhibits a maximum value to adjust the 0.2% offset yield strength ([Sigma]0.2: MPa) to be equal to or higher than 90% of its maximum value is adopted. The strengthened alpha brass has a 0.
    Type: Application
    Filed: February 3, 2006
    Publication date: May 14, 2009
    Applicant: MITSUI MINING & SMELTING CO., LTD.
    Inventor: Hiroshi Yamaguchi
  • Patent number: 7485200
    Abstract: This copper alloy contains at least zirconium in an amount of not less than 0.005% by weight and not greater than 0.5% by weight, includes a first grain group including grains having a grain size of not greater than 1.5 ?m, a second grain group including grains having a grain size of greater than 1.5 ?m and less than 7 ?m, the grains having a form which is elongated in one direction, and a third grain group including grains having a grain size of not less than 7 ?m, and also the sum of ? and ? is greater than ?, and ? is less than ?, where ? is a total area ratio of the first grain group, ? is a total area ratio of the second grain group, and ? is a total area ratio of the third grain group, based on a unit area, and ?+?+?=1.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: February 3, 2009
    Assignee: Mitsubishi Shindoh Co., Ltd.
    Inventors: Masahiko Ishida, Junichi Kumagai, Takeshi Suzuki
  • Publication number: 20090020192
    Abstract: The invention includes a copper-comprising sputtering target. The target is monolithic or bonded and contains at least 99.99% copper by weight and has an average grain size of from 1 micron to 50 microns. The copper-comprising target has a yield strength of greater than or equal to about 15 ksi and a Brinell hardness (HB) of greater than about 40. The invention includes copper alloy monolithic and bonded sputtering targets consisting essentially of less than or equal to about 99.99% copper by weight and a total amount of alloying element(s) of at least 100 ppm and less than 10% by weight. The targets have an average grain size of from less than 1 micron to 50 microns and have a grain size non-uniformity of less than about 15% standard deviation (1-sigma) throughout the target. The invention additionally includes methods of producing bonded and monolithic copper and copper alloy targets.
    Type: Application
    Filed: September 22, 2008
    Publication date: January 22, 2009
    Inventors: Vladimir M. Segal, Wuwen Yi, Stephane Ferrasse, Chi tse Wu, Susan D. Strothers, Frank A. Alford, William B. Willett
  • Publication number: 20080314612
    Abstract: A conductor of an electric cable for wiring, containing a copper alloy material containing 1.0 to 4.5 mass % of Ni, 0.2 to 1.1 mass % of Si, and the balance of Cu and unavoidable impurities, in which the copper alloy material has an average grain diameter of 0.2 to 5.0 ?m.
    Type: Application
    Filed: June 6, 2008
    Publication date: December 25, 2008
    Applicant: THE FURUKAWA ELECTRIC CO., LTD.
    Inventors: Isao Takahashi, Tatsuhiko Eguchi
  • Patent number: 7468110
    Abstract: Sputtering targets and methods of making sputtering targets are described. The method includes the steps of: providing a sputtering metal workpiece made of a valve metal; transverse cold-rolling the sputtering metal workpiece to obtain a rolled workpiece; and cold-working the rolled workpiece to obtain a shaped workpiece. The sputtering targets exhibits a substantially consistent grain structure and/or texture on at least the sidewalls.
    Type: Grant
    Filed: March 28, 2005
    Date of Patent: December 23, 2008
    Assignee: Cabot Corporation
    Inventors: Robert B. Ford, Christopher A. Michaluk
  • Publication number: 20080202643
    Abstract: A process is provided for forming an age hardened wire for use as an electrical conductor, which wire is formed from a copper base alloy consisting of from 1.25 to 3.6 wt % nickel, from 0.25 to 0.45 beryllium, and the balance copper and impurities which do not affect the properties of said alloy, with the nickel and beryllium being present in the copper base alloy in a ratio of nickel to beryllium from 5.0 to 8.0. The process comprises the steps of providing a copper base alloy material consisting of from 1.25 to 3.6 wt % nickel, from 0.25 to 0.45 beryllium, and the balance copper and impurities which do not affect the properties of said alloy, which nickel and beryllium are present in the copper base alloy in a ratio of nickel to beryllium from 5.0 to 8.0, cold working the material in a single step; and age hardening the cold worked material in a single step to form a wire in a cold worked and aged hardened condition having an electrical conductivity of at least about 60% IACS.
    Type: Application
    Filed: February 8, 2008
    Publication date: August 28, 2008
    Inventor: Joseph Saleh
  • Patent number: 7416620
    Abstract: The invention relates to a copper alloy having high recrystallization temperature and good conductivity used in brazed heat exchangers which alloy consists of 0.1 to 0.3% in weight chromium. The invention also relates to a method for the manufacturing of the alloy which method consists of the following steps: casting, cold working, annealing and another cold working before brazing.
    Type: Grant
    Filed: April 9, 2004
    Date of Patent: August 26, 2008
    Assignee: Luvata Oy
    Inventors: Mariann Sundberg, Rolf Sundberg, Sture Östlund
  • Publication number: 20080121320
    Abstract: Superior bendability in a copper alloy and further strength improvement ensures characteristics which are sufficiently superior in view of essential qualities of strength of titanium-copper. 2.0 to 4.0 mass % of Ti, 0.01 to 0.50 mass % of one or more than one kind of element from among Fe, Co, Ni, Cr, V, Zr, B, and P as the third element group are contained, and not less than 50% of the total content of these elements is made to exist as second-phase particles.
    Type: Application
    Filed: January 29, 2008
    Publication date: May 29, 2008
    Applicant: NIPPON MINING & METALS COMPANY, LIMITED
    Inventors: Yasutaka Sugawara, Kazuhiko Fukamachi
  • Patent number: 7285174
    Abstract: A method for producing metallic strips having a high-grade cube texture based on nickel, copper, aluminum, silver or alloys of these metals including austenitic iron-nickel alloys makes it possible to obtain, during a subsequent annealing process and with lower total degrees of forming, a recrystallization cube layer of a quality equal to that of one obtained using customary roll forming and produces a better quality cube texture with comparable total degrees of forming. To this end, a forming method is provided during which the materials are formed by cold drawing before their recrystallization annealing thereby rendering them high-grade. The tools used for this include: a) non-driven roll devices with an axially parallel flat pair of rolls or turk's head arrangements with two pairs of rolls or; b) fixed drawing jaws that are slanted toward one another. The strips produced according to the invention can be used, for example, as a coating support for producing strip-shaped high-temperature superconductors.
    Type: Grant
    Filed: August 29, 2002
    Date of Patent: October 23, 2007
    Assignee: Leibniz-Institut fuer Festkoerper-und Werkstoffforschung Dresden e.V.
    Inventors: Joerg Eickemeyer, Dietmar Selbmann, Ralph Opitz
  • Publication number: 20040216817
    Abstract: The yield strength of UNS C17460 BeCu alloy can be significantly enhanced without compromising electrical conductivity or bend formability by age hardening the alloy during manufacture using two separate heat treatment steps and cold rolling the alloy for enhancing age hardening response between these two heat treatment steps rather than before age hardening begins as in current technology.
    Type: Application
    Filed: January 24, 2003
    Publication date: November 4, 2004
    Inventor: John C. Harkness
  • Patent number: 6800151
    Abstract: The present invention provides a method of modifying conductivity- and strength-related properties of a Cu—Ag alloy plate produced by predetermined annealing and cold rolling, composed of 4 to 32% by atom of Ag and Cu accounting for the balance, wherein the plate rolled at any reduction ratio is heated at different temperature levels, and strength and conductivity of the plate after the annealing are measured for each annealing temperature so as to establish the conductivity-annealing temperature curve and strength-annealing temperature curve as the correlations between annealing temperature and strength and between annealing temperature and conductivity, then, an optimum annealing temperature required to provide a desired conductivity or strength is determined by extrapolating the above-described conductivity-annealing temperature curve or strength-annealing temperature curve at the desired conductivity or strength, and the plate prepared at any reduction ratio is annealed at the optimum annealing temp
    Type: Grant
    Filed: December 13, 2001
    Date of Patent: October 5, 2004
    Assignee: Tanaka Kikinzoku Kogyo K.K.
    Inventor: Kunihiro Shima
  • Publication number: 20040042928
    Abstract: A high strength copper alloy is made of a prescribed material composed of Cu and inevitable impurities as well as titanium (Ti) at 0.1 to 4 weight percent, wherein it is possible to further include at least one of Ag, Ni, Fe, Si, Sn, Mg, Zn, Cr, and P at a prescribed weight percent ranging from 0.01 to 2 in total. In a manufacturing method, the material is subjected to cold rolling, precipitation treatment, and additional cold rolling sequentially, wherein the reduction rate of the additional cold rolling is set to 3% or more, and the total reduction rate of the cold rolling and the additional cold rolling ranges from 15% to 50%, so that a ratio of yield strength versus tensile strength is set to 0.9 or more. In addition, it is possible to perform stress relaxation annealing after the additional cold rolling upon heating of the material for a prescribed time.
    Type: Application
    Filed: September 2, 2003
    Publication date: March 4, 2004
    Inventors: Fumiaki Sasaki, Yozo Tsugane
  • Patent number: 6689232
    Abstract: The present invention relates to copper-magnesium-phosphorous alloys. In a first embodiment, copper-magnesium-phosphorous alloys in accordance with the present invention consist essentially of magnesium in an amount from about 0.01 to about 0.25% by weight, phosphorous in an amount from about 0.01 to about 0.2% by weight, silver in an amount from about 0.001 to about 0.1% by weight, iron in an amount from about 0.01 to about 0.25% by weight, and the balance copper and inevitable impurities. Preferably, the magnesium to phosphorous ratio is greater than 1.0. In a second embodiment, copper-magnesium-phosphorous alloys in accordance with the present invention consist essentially of magnesium in an amount from about 0.01 to about 0.25% by weight, phosphorous in an amount from about 0.01 to about 0.2% by weight, optionally silver in an amount from about 0.001 to about 0.1% by weight, at least one element selected from the group consisting of nickel, cobalt, and mixtures thereof in an amount from about 0.
    Type: Grant
    Filed: March 7, 2001
    Date of Patent: February 10, 2004
    Inventor: Ashok K. Bhargava
  • Patent number: 6679956
    Abstract: A process for making a copper base alloy comprises the steps of casting a copper base alloy containing tin, zinc, iron and phosphorous and forming phosphide particles uniformly distributed throughout the matrix. The forming step comprises homogenizing the alloy at least once for at least one hour at a temperature from 1000 to 1450° F., rolling to final gauge including at least one process anneal for at least one hour at 650 to 1200° F. followed by slow cooling, and stress relief annealing at final gauge for at lest one hour at 300 to 600° F.
    Type: Grant
    Filed: March 14, 2001
    Date of Patent: January 20, 2004
    Assignee: Waterbury Rolling Mills, Inc.
    Inventor: Ashok K. Bhargava
  • Publication number: 20030019746
    Abstract: Sputtering targets and methods of making sputtering targets are described. The method includes the steps of: providing a sputtering metal workpiece made of a valve metal; transverse cold-rolling the sputtering metal workpiece to obtain a rolled workpiece; and cold-working the rolled workpiece to obtain a shaped workpiece. The sputtering targets exhibits a substantially consistent grain structure and/or texture on at least the sidewalls.
    Type: Application
    Filed: November 9, 2001
    Publication date: January 30, 2003
    Inventors: Robert B. Ford, Christopher A. Michaluk
  • Publication number: 20020157741
    Abstract: A high strength titanium copper alloy consists of Ti at 2.0% by mass or more to 3.5% by mass or less; the balance of copper and inevitable impurities; an average grain size of 20 &mgr;m or less; and a 0.2% proof stress expressed by “b” of 800 N/mm2 or more. The alloy further comprises a bending radius ratio (bending radius/sheet thickness) not causing cracking as expressed by “a” by a W-bending test in a transverse direction to a rolling direction, wherein “a” and “b” satisfy a≦0.
    Type: Application
    Filed: February 19, 2002
    Publication date: October 31, 2002
    Applicant: Nippon Mining & Metals Co., Ltd.
    Inventors: Michiharu Yamamoto, Tositeru Nonaka, Takahiro Umegaki
  • Patent number: 6464810
    Abstract: An object is to improve machinability and polishability of a brass material prepared through cold working, particularly in a brass pipe material. Before cold working, by having an &agr; phase making heat treatment step for increasing an area ratio of an &agr; phase, cold ductility can be ensured at the time of cold working. Also, after cold working, by having a &bgr; phase making heat treatment step for increasing an area ratio of a &bgr; phase, a brass material excellent in machinability and polishability can be provided.
    Type: Grant
    Filed: April 17, 2000
    Date of Patent: October 15, 2002
    Assignee: Toto Ltd.
    Inventors: Katsuaki Nakamura, Toru Uchida
  • Patent number: 6464809
    Abstract: Processes for producing articles with stress-free edges which comprise slitting a copper or copper alloy sheet to provide strips of the copper material, heating the strips in a furnace at a temperature of 200-250° C. under a protective atmosphere, and cooling the strips to room temperature, the strips so produced being useful to make stamped articles.
    Type: Grant
    Filed: November 30, 1998
    Date of Patent: October 15, 2002
    Assignee: Outokumpu Oyj
    Inventors: Anders Kamf, Lawrence Wojnicz
  • Patent number: 6458222
    Abstract: A brass for forging which has an apparent Zn content of 37 to 50 wt % and contains 0.5 to 7 wt % Sn. The brass has a microstructure of at least an &agr; phase and a &ggr; phase at a temperature of 300 to 550° C. and has crystal grain sizes which are made fine. A process for preparing brass involving making the crystal grain size of brass material fine and plastic working the brass material at 300 to 550° C.
    Type: Grant
    Filed: May 8, 2000
    Date of Patent: October 1, 2002
    Assignee: Toto Ltd.
    Inventors: Ryuji Matsubara, Nobuyuki Ashie, Katsuaki Nakamura
  • Patent number: 6436206
    Abstract: The present invention relates to copper base alloys containing tin, phosphorous, iron, and zinc and having phosphide particles uniformly distributed through the alloy matrix, which phosphide particles include fine and coarse phosphide particles. The alloy is produced using a process which comprises casting a copper base alloy consisting essentially of tin in an amount greater than about 1.5 wt. % up to 4.0 wt. %, phosphorous from 0.01 to 0.20 wt. %, iron from 0.01 to 0.80 wt. %, zinc in an amount greater than 1.0 wt. % up to 8.0 wt. %, and the balance essentially copper; homogenizing at least once for at least one hour at from 1000° F. to 1450° F.; rolling to final gauge including at least one process anneal for at least one hour at 650° F. to 1200° F. followed by slow cooling, preferably at a rate in the range of 20° F. to 200° F. per hour; and stress relief annealing at final gauge for at least one hour at 300° F. to 600° F.
    Type: Grant
    Filed: April 1, 1999
    Date of Patent: August 20, 2002
    Assignee: Waterbury Rolling Mills, Inc.
    Inventor: Ashok K. Bhargava
  • Publication number: 20020088514
    Abstract: Processes for producing articles with stress-free edges which comprise slitting a copper or copper alloy sheet to provide strips of the copper material, heating the strips in a furnace at a temperature of 200-250° C. under a protective atmosphere, and cooling the strips to room temperature, the strips so produced being useful to make stamped articles.
    Type: Application
    Filed: November 30, 1998
    Publication date: July 11, 2002
    Inventors: ANDERS KAMF, LAWRENCE WOJNICZ
  • Patent number: 6375760
    Abstract: A structure of a two-phase steel is controlled by subjecting a steel containing C: 0.05-0.80 mass % to a strain work in a true strain quantity of not less than 0.1 at a temperature zone of &agr;-phase or &ggr;-phase and then applying a magnetic field of 0.1-20 T thereto within a temperature range forming a two-phase zone of &agr;-phase and &ggr;-phase.
    Type: Grant
    Filed: December 8, 2000
    Date of Patent: April 23, 2002
    Assignees: Kawasaki Steel Corporation, Nippon Steel Corporation, NKK Corp.
    Inventors: Kei-ichi Maruta, Michio Shimotomai, Yasunori Yonehana, Yoshio Abe, Tomoyuki Yokota, Yoshitaka Adachi, Norikazu Matsukura
  • Publication number: 20010048019
    Abstract: Described is a method for producing a diffusion bonded sputtering target assembly which is thermally treated to precipitation harden the backing plate without compromising the diffusion bond integrity. The method includes heat treating and quenching to alloy solution and artificially age the backing plate material after diffusion bonding to a target. Thermal treatment of the diffusion bonded sputtering target assembly includes quenching by partial-immersion in a quenchant and is performed after diffusion bonding and allows for various tempers in the backing plate.
    Type: Application
    Filed: July 9, 2001
    Publication date: December 6, 2001
    Inventors: Anthony F. Beier, Janine K. Kardokus, Susan D. Strothers
  • Patent number: 6251199
    Abstract: A copper alloy having improved resistance to cracking due to localized plastic deformation and the process of making it. The alloy consists essentially of: from 0.7 to 3.5 weight percent nickel; from 0.2 to 1 weight percent silicon; from 0.05 to 1 weight percent tin; from 0.26 to 1 weight percent iron; and the balance copper and unavoidable impurities. The copper alloy has a local ductility index of greater than 0.7 and a tensile elongation exceeding 5%. Cobalt may be substituted for iron, in whole or in part, on a 1:1 basis by weight. The alloy is precipitation hardenable and useful for electronic applications, including without limitation, connectors.
    Type: Grant
    Filed: May 4, 1999
    Date of Patent: June 26, 2001
    Assignee: Olin Corporation
    Inventors: Frank N. Mandigo, John F. Breedis
  • Patent number: 6197134
    Abstract: A process for producing a fcc metal consisting of copper having random orientations comprising cross rolling which is performed to achieve a total draft of at least 20% with the rolling axis being offset at 15° or more in each pass to a total offset of at least 90°, and subsequent full annealing which is accompanied by recrystallization, the fcc metal satisfying the following relationships: I(200)/I(111)≦2.3 and I(220)/I(111)≦1.0, where I(111), I(200) and I(220) are the integral intensities of the (111), (200) and (220) faces, respectively, of crystal faces as measured by X-ray diffractiometry.
    Type: Grant
    Filed: September 29, 1999
    Date of Patent: March 6, 2001
    Assignee: Dowa Mining Co., Ltd.
    Inventors: Toshihiro Kanzaki, Fumi Tanabe
  • Patent number: 6149741
    Abstract: A method for forming supports for use in electronic components. A plate of copper-based alloy including from 0.1 to 1.0% by weight nickel, and from 0.005 to 0.1% by weight of phosphorus is melted and cast. The alloy includes fine precipitates of nickel phosphides throughout the copper matrix. The plate is subjected to a series of deformation operations including, rolling and intermediate annealing at a temperature in the range of 400.degree. to 600.degree. C., with the annealing temperature being maintained for two to four hours, thereby maximizing the production of fine precipitates of nickel phosphides within the alloy. After alloy formation, the plate is coated with a layer of nickel, cut into a desired shape, and secured to an electronic component.
    Type: Grant
    Filed: June 10, 1999
    Date of Patent: November 21, 2000
    Assignee: Establissements Griset
    Inventor: Gerard Durand-Texte