With Ageing, Solution Treating (i.e., For Hardening), Precipitation Hardening Or Strengthening Patents (Class 148/686)
  • Patent number: 10711329
    Abstract: A beryllium-free high-strength copper alloy includes, about 10-30 vol % of L12-(Ni,Cu)3(Al,Sn), and substantially excludes cellular discontinuous precipitation around grain boundaries. The alloy may include at least one component selected from the group consisting of: Ag, Cr, Mn, Nb, Ti, and V, and the balance Cu.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: July 14, 2020
    Assignee: QuesTek Innovations LLC
    Inventors: James A. Wright, Abhijeet Misra
  • Patent number: 10421122
    Abstract: A metal powder contains not less than 0.10 mass % and not more than 1.00 mass % of at least one of chromium and silicon, and a balance of copper. The total content of the chromium and the silicon is not more than 1.00 mass %. In accordance with an additive manufacturing method for this metal powder, an additively-manufactured article made from a copper alloy is provided. The additively-manufactured article has both an adequate mechanical strength and an adequate electrical conductivity.
    Type: Grant
    Filed: July 24, 2017
    Date of Patent: September 24, 2019
    Assignees: DAIHEN CORPORATION, OSAKA RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Ryusuke Tsubota, Junichi Tanaka, Yohei Oka, Takayuki Nakamoto, Takahiro Sugahara, Mamoru Takemura, Sohei Uchida
  • Patent number: 8721765
    Abstract: A method of producing a brass is disclosed. The alloy contains trace amounts of iron, manganese or aluminum. Phosphorous is added to a zinc, copper melt and combined with the iron, manganese and aluminum to form intermetallics. Additional phosphorous is added so the melt contains between about 0.08 to 0.15% phosphorous. A low lead brass alloy is provided. The alloy has tin in the range of 0.15% to 0.35%.
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: May 13, 2014
    Assignee: Mueller Industries, Inc.
    Inventor: Barry Munce
  • Patent number: 8506730
    Abstract: The free-cutting copper alloy according to the present invention contains a greatly reduced amount of lead in comparison with conventional free-cutting copper alloys, but provides industrially satisfactory machinability. The free-cutting alloys comprise 69 to 79 percent, by weight, of copper, 2.0 to 4.0 percent, by weight, of silicon, 0.02 to 0.4 percent, by weight, of lead, and the remaining percent, by weight, of zinc.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: August 13, 2013
    Assignee: Mitsubishi Shindoh Co., Ltd.
    Inventor: Keiichiro Oishi
  • Patent number: 8211249
    Abstract: A copper base rolled alloy has a copper base alloy composition containing 0.05 percent by mass or more, and 10 percent by mass or less of at least one type of element selected from Be, Mg, Al, Si, P, Ti, Cr, Mn, Fe, Co, Ni, Zr and Sn, wherein the X-ray diffraction intensity ratio I(111)/I(200) where I(hkl) is the X-ray diffraction intensity from (hkl)plane measured with respect to a rolled surface is 2.0 or more.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: July 3, 2012
    Assignees: NGK Insulators, Ltd., Osaka University
    Inventors: Tetsuo Sakai, Naokuni Muramatsu, Koki Chiba, Naoki Yamagami
  • Publication number: 20110186192
    Abstract: A copper alloy material for an electric/electronic part, having a composition comprising Co 0.5 to 2.0 mass % and Si 0.1 to 0.5 mass %, with the balance of Cu and inevitable impurities, in which a copper alloy of a matrix has a grain size of 3 to 35 ?m, a precipitate composed of Co and Si has a particle size of 5 to 50 nm, the precipitate has a density of 1×108 to 1×1010 number/mm2, and the copper alloy material has a tensile strength of 550 MPa and an electrical conductivity of 50% IACS or more.
    Type: Application
    Filed: January 28, 2011
    Publication date: August 4, 2011
    Applicant: THE FURUKAWA ELECTRIC CO., LTD.
    Inventors: Kuniteru MIHARA, Ryosuke MATSUO, Tatsuhiko EGUCHI
  • Publication number: 20110027612
    Abstract: A bronze alloy having a metallographic structure which has a fine multilayer structure constituted of a layer of ?-form copper and a layer of a copper-tin intermetallic compound and includes an eutectoid phase comprising, dispersedly precipitated therein, fine metal grains containing at least bismuth (fine bismuth grains, etc.). The proportion of the lamellar eutectoid phase is 10-70% by area. From the standpoint of composition, the bronze alloy comprises copper and tin as main components and contains nickel, bismuth, and sulfur as additive elements, the nickel content being 0.5-5.0 mass %, the bismuth content being 0.5-7.0 mass %, and the sulfur content being 0.08-1.2 mass %. The tin content preferably is 8-15 mass %. The alloy may further contain lead in a proportion of 4 mass % or lower. The bronze alloy is used as a sliding surface of a sliding member (e.g., a hydraulic cylinder block).
    Type: Application
    Filed: November 14, 2008
    Publication date: February 3, 2011
    Inventors: Katsuyuki Funaki, Takeshi Kobayashi, Toru Maruyama, Toshimitu Okane, Iwao Akashi
  • Publication number: 20100326573
    Abstract: An copper alloy material for electric/electronic components containing Co by 0.2 to 2 mass % and Si by 0.05 to 0.5 mass % and having a remaining component composed of Cu and unavoidable impurities, characterized in that its grain size is 3 to 35 ?m and size of precipitate containing the both of Co and Si is 5 to 50 nm, electric conductivity is 50% IACS or more, tensile strength is 500 MPa or more and bending workability (R/t) is 2 or less.
    Type: Application
    Filed: January 30, 2009
    Publication date: December 30, 2010
    Inventors: Kuniteru Mihara, Ryosuke Matsuo, Tatsuhiko Eguchi
  • Publication number: 20100243112
    Abstract: A beryllium-free high-strength copper alloy includes, about 10-30 vol % of L12-(Ni,Cu)3(Al,Sn), and substantially excludes cellular discontinuous precipitation around grain boundaries. The alloy may include at least one component selected from the group consisting of: Ag, Cr, Mn, Nb, Ti, and V, and the balance Cu.
    Type: Application
    Filed: March 31, 2009
    Publication date: September 30, 2010
    Applicant: QuesTek Innovations LLC
    Inventors: James A. Wright, Abhijeet Misra
  • Patent number: 7727345
    Abstract: Raw materials for a copper alloy are melted in a high frequency smelter and cast, and milling, rolling, and annealing are carried out. Then, rolling is again carried out. Thereafter, the materials are heated at a temperature of 900° C. for one minute and are quenched in water, to be solution treated. Subsequently, the materials are heated at a temperature of 500° C. for five hours for aging, and then are cooled at a cooling rate in a range of 10 to 50° C. per hour until the materials are cooled to a temperature of 380° C.
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: June 1, 2010
    Assignees: Mitsubishi Denki Kabushiki Kaisha, Mitsubishi Electric Metecs Co., Ltd.
    Inventors: Toshikazu Kawahata, Takefumi Ito, Takanori Sone, Yumiko Iwashita, Toshihiro Kurita
  • Publication number: 20100006191
    Abstract: The electrical conductivity of a wrought processed, high strength, age hardened Be—Cu alloy is enhanced by overaging the alloy in manufacture.
    Type: Application
    Filed: July 9, 2008
    Publication date: January 14, 2010
    Applicant: BRUSH WELLMAN, INC.
    Inventors: John F Wetzel, John C. Harkness
  • Publication number: 20090202861
    Abstract: A copper-based deposited alloy strip for a contact material has a maximum value of a difference not larger than 100 MPa among three of tensile strengths, that are a tensile strength in a rolling direction thereof, a tensile strength in a direction crossing the rolling direction with an angle of 45 degrees, and a tensile strength in a direction crossing the rolling direction with an angle of 90 degrees. A process for producing the copper-based deposited alloy strip for a contact material includes the steps of: performing a solution heated treatment on a copper alloy strip; and performing an aging heat treatment on the copper alloy strip.
    Type: Application
    Filed: September 13, 2007
    Publication date: August 13, 2009
    Inventors: Kuniteru Mihara, Masato Ohno, Naofumi Tokuhara, Tatsuhiko Eguchi
  • Patent number: 7291231
    Abstract: A copper-nickel-silicon quench substrate rapidly solidifies molten alloy into microcrystalline or amorphous strip. The substrate is composed of a thermally conducting alloy. It has a two-phase microstructure with copper rich regions surrounded by a discontinuous network of nickel silicide phases. The microstructure is substantially homogeneous. Casting of strip is accomplished with minimal surface degradation as a function of casting time. The quantity of material cast during each run is improved without the toxicity encountered with copper-beryllium substrates.
    Type: Grant
    Filed: August 21, 2003
    Date of Patent: November 6, 2007
    Assignee: Metglas, Inc.
    Inventors: Shinya Myojin, Richard L. Bye, Nicholes J. DeCristofaro, David W. Millure, Gary A. Schuster
  • Patent number: 7204893
    Abstract: In the present invention, forming is carried out by employing casting to rapidly solidify molten material comprising a copper base alloy containing 3 to 20% Ag (mass % hereinafter), 0.5 to 1.5% Cr and 0.05 to 0.5% Zr. Next, an aging treatment for precipitation is carried out at 450 to 500° C., and the formed article is obtained by precipitation strengthening. In addition, in the aforementioned copper base alloy, molten material comprising a copper base alloy containing Ag in the amount of 3 to 8.5% is solidified by casting, and the solidified article or the hot worked article thereof is subjected to an aging treatment for precipitation and a thermomechanical treatment using forging or rolling, and the casting is obtained by forming the material into a specific shape and carrying out precipitation strengthening.
    Type: Grant
    Filed: August 8, 2003
    Date of Patent: April 17, 2007
    Assignee: Ishikawajima-Harima Heavy Industries, Co., Ltd.
    Inventor: Kazuaki Mino
  • Patent number: 7056396
    Abstract: The free-cutting copper alloy according to the present invention contains a greatly reduced amount of lead in comparison with conventional free-cutting copper alloys, but provides industrially satisfactory machinability. The free-cutting alloys comprise 69 to 79 percent, by weight, of copper, 2.0 to 4.0 percent, by weight, of silicon, 0.02 to 0.4, by weight, of lead, and the remaining percent, by weight, of zinc.
    Type: Grant
    Filed: October 22, 2001
    Date of Patent: June 6, 2006
    Assignee: Sambo Copper Alloy Co., Ltd.
    Inventor: Keiichiro Oishi
  • Patent number: 6797082
    Abstract: The invention refers to batch casting, semi-continuous casting or continuous casting and rolling of copper, providing the addition of lead or refining the melt copper or the melt microalloyed copper to a lead content equal to or higher than 200 weight ppm. This minimizes the number of pores and defects, decreasing the number of incidences or breaks during casting and in service. However, it does not reduce the electrical conductivity. The addition of lead allows the cast and roll of copper microalloyed with elements such as S, Se, As, Sb, Bi, Sn, Zn, Ni, Fe, Ag and Te, in concentrations of the order of tens of weight ppm. The copper microalloys manufactured in this way have annealing temperatures and strain strengths higher than those obtained from the equivalent tough-pitch copper or the equivalent microalloyed copper with lead content lower than 15-20 weight ppm.
    Type: Grant
    Filed: February 7, 2000
    Date of Patent: September 28, 2004
    Assignee: La Farga Lacambra, S.A.
    Inventors: José Oriol Guixà Arderiu, Miquel Garcia Zamora, Ferran Espiell Àlvarez, Miquel Àngel Fernández López, Araceli Esparducer Broco, Mercè Segarra Rubik, Josep Ma Chimenos Ribera
  • Patent number: 6764556
    Abstract: A copper-nickel-silicon quench substrate rapidly solidifies molten alloy into microcrystalline or amorphous strip. The substrate is composed of a thermally conducting alloy. It has a two-phase microstructure with copper rich regions surrounded by a network of nickel silicide phases. The microstructure is substantially homogeneous. Casting of strip is accomplished with minimal surface degradation as a function of casting time. The quantity of material cast during each run is improved without the toxicity encountered with copper-beryllium substrates.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: July 20, 2004
    Inventors: Shinya Myojin, Richard L. Bye, Nicholas J. Decristofaro, Jeng S. Lin, David W. Millure, Joseph G. Cox, Jr., Dale R. Walls, Gary B. A. Schuster
  • Patent number: 6716292
    Abstract: An unwrought continuous cast Cu—Ni—Sn spinodal alloy and a method for producing the same is disclosed. The Cu—Ni—Sn spinodal alloy is characterized by an absence of discontinuous &ggr;′ phase precipitate at the grain boundaries, ductile fracture behavior during tensile testing, high strength, excellent wear and corrosion resistance, superior bearing properties, and contains from about 8-16 wt. % nickel, from about 5-8 wt. % tin, and a remainder copper.
    Type: Grant
    Filed: November 3, 1995
    Date of Patent: April 6, 2004
    Assignee: Castech, Inc.
    Inventors: William D. Nielsen, Jr., William D. Nielsen, Sr.
  • Publication number: 20030091461
    Abstract: An Ni-free white copper alloy of formula CuaZnbTic or CuaZnbTicXd wherein X is at least one element selected from the group consisting of Al, Sn, Ag and Mn, b, c and d are, in mass %, 0.5≦b≦30, 1≦c≦7 and 0.1≦d≦4, and a is the balance, with unavoidable elements, and also a producing method therefor, comprising: preparing a material alloy for the above white copper alloy; heating the alloy to 700 to 885° C.; and cooling the alloy. The Ni-free white copper alloy has a strength and excellent hardness comparable to those of nickel silver, as well as excellent workability, corrosion resistance and whiteness in addition to ductility, and is free from an Ni allergy problem because of containing no nickel, and moreover tends not to cause needle detectors to malfunction.
    Type: Application
    Filed: October 24, 2002
    Publication date: May 15, 2003
    Applicant: YKK CORPORATION
    Inventors: Yasuharu Yoshimura, Kazuhiko kita, Takuya Koizumi
  • Patent number: 6479170
    Abstract: The present invention provides an electrodeposited copper foil which solves problems of electrodeposited-copper-clad laminates to which the foil has been incorporated, such as bow, twist, and poor dimensional stability, and a method of inspecting an electrodeposited copper foil so as to assure the quality of the foil. In the invention, there is employed an electrodeposited copper foil which recrystallizes by heating at low temperature during production of a copper-clad laminate employing an electrodeposited copper foil and which exhibits an elongation as high as 18% or more in an atmosphere of 180° C., wherein the maximum rate of decrease in maximum tensile strength falls within the aging time ranging from 5 to 10 minutes in a process in which tensile strength decreases as time elapses during aging in an atmosphere at 170° C., and the change in tensile strength in a knick portion shown in a {tensile strength} vs.
    Type: Grant
    Filed: January 5, 2001
    Date of Patent: November 12, 2002
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Naotomi Takahashi, Yutaka Hirasawa
  • Patent number: 6413649
    Abstract: The present invention is directed to brazing filler metals that can be used in the infiltration brazing of porous matrix materials without the need for a flux. The brazing filler metals contain two different Group II metals and a third metal of Group 9 and 10. A particular brazing filler metal of the invention contains silver, copper, and nickel. The invention is also directed to composite materials formed by infiltration of the brazing material into a porous matrix, and to methods for preparing the composite materials. The invention is further directed to composite articles fabricated from composite materials, including steel bearings or bushings, and to methods of preparing the composite articles.
    Type: Grant
    Filed: March 6, 1998
    Date of Patent: July 2, 2002
    Assignee: The Morgan Crucible Company plc
    Inventors: David J. Kepniss, Toshimasa Oyama
  • Patent number: 6387195
    Abstract: Large sections of solution annealed, precipitation hardenable alloys which are resistant to internal cracking yet fully hardenable can be produced if, during rapid quenching, the temperature of the section is allowed to stabilize immediately above the alloy's solvus temperature before the section is rapidly quenched. Preferably, the temperature of the section is allowed to stabilize a second time, this time at an elevated temperature not so high that significant phase changes occur, before the section is cooled to ambient.
    Type: Grant
    Filed: November 3, 2000
    Date of Patent: May 14, 2002
    Assignee: Brush Wellman, Inc.
    Inventors: William J. Bishop, Noel M. Brady, Walter R. Cribb, Anatoly A. Offengenden
  • Publication number: 20010048019
    Abstract: Described is a method for producing a diffusion bonded sputtering target assembly which is thermally treated to precipitation harden the backing plate without compromising the diffusion bond integrity. The method includes heat treating and quenching to alloy solution and artificially age the backing plate material after diffusion bonding to a target. Thermal treatment of the diffusion bonded sputtering target assembly includes quenching by partial-immersion in a quenchant and is performed after diffusion bonding and allows for various tempers in the backing plate.
    Type: Application
    Filed: July 9, 2001
    Publication date: December 6, 2001
    Inventors: Anthony F. Beier, Janine K. Kardokus, Susan D. Strothers
  • Patent number: 6231700
    Abstract: A high strength, highly electrically conductive copper-based alloy and method for producing the alloy are provided, with the alloy containing boron in the range of 0.0-2.9 at. %, magnesium in a range of about 2.8-7.6 at. %, tin in a range of about 2.1-4.3 at. %, and the balance copper and unavoidable impurities. The method for producing the high-strength, highly conductive alloy includes solution heat treating or annealing the material to dissolve the solute elements into a solid solution including the copper, rapidly quenching the material to freeze the solute elements in solid solution, and aging the material at a temperature in a range of about 400-475° C. to precipitation harden the alloy material.
    Type: Grant
    Filed: December 10, 1999
    Date of Patent: May 15, 2001
    Assignee: South Dakota School of Mines and Technology
    Inventors: Glen A. Stone, Stanley M. Howard
  • Patent number: 6059905
    Abstract: A treatment process is provided for a copper-beryllium alloy comprising from about 0.2% to about 0.7% beryllium, no greater than 3.5% of cobalt and/or nickel, no greater than 0.5% of titanium and/or zirconium and at least 90% copper, wherein the alloy has been cold worked to a ready-to-finish gauge, comprising the steps of annealing the cold worked ready-to-finish gauge copper-beryllium alloy at a temperature from about 1500.degree. F. to about 1685.degree. F., cold working the annealed copper-beryllium alloy to reduce its gauge to a range of from about 20% to about 60%, and age hardening the copper-beryllium alloy at a temperature of from about 700.degree. F. to about 950.degree. F. for about 1 to about 7 hours. The alloy is characterized by satisfactory levels of strength and electrical conductivity as well as enhanced levels of formability, particularly in the direction parallel to the direction of rolling the alloy.
    Type: Grant
    Filed: March 29, 1995
    Date of Patent: May 9, 2000
    Assignee: NGK Metals Corporation
    Inventors: Sam Friedman, Sherwood Goldstein, Yoshio Ito
  • Patent number: 5858136
    Abstract: Copper wire coated with a layer of zinc is heated to a temperature (T.sub.1) sufficient for the formation of a brass phase .beta., and the temperature is maintained until complete diffusion of the zinc. The thickness of the zinc covering can be chosen in such a way that once the zinc is completely diffused, the wire consists of a brass phase .beta. in its periphery and of copper in its central part. The wire is then heated to a temperature (T.sub.2) necessary for the formation of brass phase .alpha., and the central copper part of the wire is transformed into brass phase .alpha..
    Type: Grant
    Filed: December 9, 1996
    Date of Patent: January 12, 1999
    Assignee: Charmilles Technologies SA
    Inventor: Jean Paul Briffod
  • Patent number: 5837068
    Abstract: A bulk magnetoresistance effect material of a composition represented by the general formula: T.sub.100-A M.sub.A (wherein T is at least one element selected between Cu and Au; M is at least one element selected from the group consisting of Co, Fe, and Ni; and A is in the range: 1.ltoreq.A.ltoreq.50 by atomic percent) is prepared by casting a molten mixture of the above composition, and subjecting the resulting casting to homogenization and further to heat treatment. The bulk magnetoresistance effect material is high in the rate of change in the electrical resistance thereof, i.e., shows a large magnetoresistive effect and can be obtained in such bulk form in arbitrary shapes adaptable for various uses. Using the material, various types of magnetoresistive elements are obtained.
    Type: Grant
    Filed: January 6, 1997
    Date of Patent: November 17, 1998
    Assignee: Kazuaki Fukamichi and YKK Corporation
    Inventors: Kazuaki Fukamichi, Noriyuki Kataoka, Yutaka Shimada, Hideki Takeda
  • Patent number: 5503691
    Abstract: A method of enhancing the appearance of a polished surface of an artifact is provided in which the artifact is formed from a non-ferrous alloy, in particular, but not exclusively, a precious metal alloy, chosen to exhibit a martensitic and a parent phase structure. The surface, or relevant part thereof, is polished in one of the phases, usually the parent phase, followed by heat treatment to effect a phase transformation, generally to the martensitic phase. This phase change causes a visible surface effect to the polished surface which may be described as a spangle effect.
    Type: Grant
    Filed: December 1, 1994
    Date of Patent: April 2, 1996
    Assignee: Mintek
    Inventors: Ira M. Wolff, Michael B. Cortie
  • Patent number: 5407499
    Abstract: A tubular blank made of an age-hardening copper alloy is annealed and quenched; whereupon a mandrel of the final shape and size of the interior cavity of the mold to be made is inserted; whereupon the blank is forced onto the mandrel primarily by drawing, but also rolling, forging, electrodynamically or hydrostatically shaping, or a combination thereof is considered.
    Type: Grant
    Filed: April 14, 1993
    Date of Patent: April 18, 1995
    Assignee: KM Kabelmetal A.G.
    Inventor: Horst Gravemann
  • Patent number: 5198044
    Abstract: Process for the preparation of a substantially homogeneous alpha phase copper-nickel-tin alloy comprising copper and 4-18% by weight of nickel and 3-13% by weight of tin, comprising atomizing a molten alloy having the before-indicated composition and collecting atomized particles on a collecting surface in such a way that solid collected material is obtained having a temperature, of at least 700.degree. C., followed by quick cooling of the collected material to a temperature below 300.degree. C.The alloy thus obtained may be hardened, preferably after shaping, by spinodal decomposition.
    Type: Grant
    Filed: April 9, 1991
    Date of Patent: March 30, 1993
    Assignee: Shell Research Limited
    Inventors: Jeroen Colijn, Gerrit J. H. Mol, Piet Krahmer, Allan D. Steele