Abstract: Photoconductive semiconductor material is injected into narrow and closely paced cylindrical channels in an insulating matrix plate to form pixel elements of a high resolution photodetector array. A transparent conductive layer is deposited on one surface of the photoconductor array while light reflecting pads are formed on the elements at the opposite surface. Subsequently, a layer of light modulating material and a transparent conductive layer are deposited on the opposite surface to obtain a high resolution spatial light modulator.
Type:
Grant
Filed:
June 18, 1993
Date of Patent:
July 12, 1994
Assignee:
The United States of America as represented by the Secretary of the Navy
Inventors:
Carmen I. Huber, Tito E. Huber, Tak-Kin Chu, Nicholas Caviris
Abstract: Method of fabricating free-standing diamond films by depositing and adhering polycrystalline diamond by hot filament chemical vapor deposition (1-100 Torr, filament temperature equal to or greater than 1900.degree. C., substrate temperature of 650.degree.-950.degree. C.) onto a substrate meltable at a temperature slightly in excess of the deposition temperature; and (b) prior to cooling said polycrystalline diamond particles, increasing (50.degree.-300.degree. C.) the substrate temperature to melt at least a portion thereof while permitting such melt to emigrate from the diamond films.
Type:
Grant
Filed:
October 29, 1990
Date of Patent:
February 2, 1993
Assignee:
Ford Motor Company
Inventors:
Timothy J. Potter, Michael A. Tamor, Ching-Hsong Wu
Abstract: A method and means for producing a layered semiconductor system are proposed wherein the required semiconductor layers are deposited on a carrier layer (10) through interaction with a melt (42). The carrier layer (10) itself may have a basic layer consisting of glass or quartz, which in turn may be formed from a melt by solidification on a metal melt.
Abstract: Epitaxial layers are grown from a body of molten material which includes flux and layer constituent components; included in the flux are lead oxide and a small amount of boron trioxide. As compared with prior-art processing in the absence of boron trioxide, enhanced yield is realized as believed to be due to reduced adhesion of solidifying material entrained upon withdrawal of a substrate after growth. The method is particularly useful in the manufacture of magnetic domain devices designed to operate at extreme temperatures, as well as in the manufacture of magneto-optic devices such as, e.g., switches, modulators, and isolators.
Type:
Grant
Filed:
June 15, 1987
Date of Patent:
March 7, 1989
Assignee:
American Telephone and Telegraph Company, AT&T Bell Labs