Abstract: A method for the determination of the resistivity of an n-type epitaxial layer formed on a silicon substrate is disclosed. This invention resides in either directly determining the true resistivity of a sample by preparing this sample without a natural oxide film which is responsible for the change with the passage of time or indirectly determining the true resistivity of a sample by intentionally forming on the sample a natural oxide film so stable to defy the change with the passage of time and measuring resistivity of this sample.
Abstract: A semiconductor device having a p type polysilicon resistor (56) with a moderate sheet resistance and low temperature coefficient of resistance is formed by a double-level polysilicon process. The process also produces n and p-channel transistors (44, 50), a capacitor having upper and lower n type polysilicon capacitor plates (36, 26), an n type polysilicon resistor (32) having a high sheet resistance, and an n type resistor (34) having a low sheet resistance. The p type doping used to form the source/drain regions (48) of p-channel transistor (50) counterdopes n type second level polysilicon to form p type polysilicon resistor (56) without effecting capacitor plates (36, 26) or the n type resistors (32, 34).
Abstract: The invention relates to a method for the preparation of electronic and electro-optical components and circuits based on conducting polymers. One or more boundary surfaces in the component between a conducting polymer and another material are formed by melting of the conducting polymer.