Dopants, Special Patents (Class 148/DIG40)
  • Patent number: 5770504
    Abstract: The preferred embodiment of the present invention overcomes the limitations of the prior art and provides a device and method to increase the latch-up immunity of CMOS devices by reducing the mobility of carriers between the devices. The preferred embodiment uses an implant formed beneath trench isolation between n-channel and p-channel devices. This implant preferably comprises relatively large/heavy elements implanted into the wafer beneath the trench isolation. The implant elements reduce the mobility of the charge carriers. This increases the latch-up holding voltage and thus reduces the likelihood of latch-up. The implants can be formed without the need for additional photolithography masks.
    Type: Grant
    Filed: March 17, 1997
    Date of Patent: June 23, 1998
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey S. Brown, Robert J. Gauthier, Jr., Xiaowei Tlan
  • Patent number: 5766695
    Abstract: The number of surface defects in semiconductor materials having a volatile species, particulary group-III nitride-based semiconductor devices, are reduced by first implanting species atoms into the semiconductor sample to fill some of the surface layer species vacancies created by growth and device fabrication processes, and then rapid thermal annealing the sample to repair broken bonds and crystalline defects and to move implanted species atoms from interstitial to substitutional sites. An optional third step deposits a dummy layer on the sample surface prior to implantation, making possible an implantation profile that places a higher density of species atoms in the surface layer than is attainable without the dummy layer and to inhibit species atoms from leaving the sample during high-temperature processing steps that follow.
    Type: Grant
    Filed: November 26, 1996
    Date of Patent: June 16, 1998
    Assignee: Hughes Electronics Corporation
    Inventors: Chanh N. Nguyen, Robert G. Wilson
  • Patent number: 5707879
    Abstract: A neutron radiation detector is described. A semiconductor material is populated with helium three (.sup.3 He) atoms to increase its overall neutron capture efficiency. Upon capture of a neutron by a .sup.3 He atom, a tritium ion and a proton are generated with energies of 0.191 and 0.573 MeV, respectively. These energies are deposited in the semiconductor material creating electron-hole pairs. The electron-hole pairs are withdrawn from the material by the application of an electric field and are collected as charges at the terminals. The associated circuitry processes the charges into pulses with these being counted and their sizes measured. The results are recorded and displayed. The number of pulses are a measure of the number of neutrons absorbed in the detector and of the neutron flux of interest. In many instances the detector can also be used to detect and display non-neutron type radiation or simultaneously neutron and non-neutron forms of radiative activity.
    Type: Grant
    Filed: January 8, 1997
    Date of Patent: January 13, 1998
    Inventor: Karl Reinitz
  • Patent number: 5527724
    Abstract: SOI (silicon-on-insulator) technology has been touted as a promising approach for fabricating advanced integrated circuits because of its advantage over bulk silicon circuits such as faster speed and improved radiation tolerance. One drawback to SOI is that parasitic bipolar induced latch-up/breakdown voltage levels severely limits the maximum supply voltage at which SOI circuits and devices can operate. When the parasitic device turns on, the SOI transistor cannot be switched off by changing the gate bias. What is described is a method whereby the operating voltage in which this effect occurs is significantly increased thus allowing circuit operation at reasonable power supply voltages. The method is to implant an electrically neutral in silicon impurity atom such as krypton, xenon or germanium into the device to form ion scattering centers. The size of the impurity atom must be much larger than the size of the silicon atom. The size difference generating a scattering center.
    Type: Grant
    Filed: September 12, 1994
    Date of Patent: June 18, 1996
    Assignee: Loral Federal Systems Company
    Inventors: Frederick T. Brady, Nadim F. Haddad, Arthur Edenfeld
  • Patent number: 5510295
    Abstract: The phase transformation temperature of a metal silicide layer formed overlying a silicon layer on a semiconductor wafer is lowered. First, a refractory metal is disposed proximate to the surface of the silicon layer, a precursory metal is deposited in a layer overlying the refractory metal, and the wafer is heated to a temperature sufficient to form the metal silicide from the precursory metal. The precursory metal may be a refractory metal, and is preferably titanium, tungsten, or cobalt. The concentration of the refractory metal at the surface of the silicon layer is preferably less than about 10.sup.17 atoms/cm.sup.3. The refractory metal may be Mo, Co, W, Ta, Nb, Ru, or Cr, and more preferably is Mo or Co. The heating step used to form the silicide is performed at a temperature less than about 700.degree. C., and more preferably between about 600.degree.-700.degree. C.
    Type: Grant
    Filed: October 29, 1993
    Date of Patent: April 23, 1996
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Lawrence A. Clevenger, Francois M. d'Heurle, James M. E. Harper, Randy W. Mann, Glen L. Miles, Donald W. D. Rakowski
  • Patent number: 5342795
    Abstract: This is a method of forming a vertical transistor device comprising: forming an n-type first drain/source layer 42; patterning a portion of the first drain/source layer 42 to form a channel 44 and a trench; forming a p-type gate structure 46 in the trench; and forming a n-type second drain/source layer 48 over the gate structure 46 and the channel 44; contacting the gate structure 54; forming p-ohmic contact to the gate structure 56; forming n-ohmic source contact 54; and forming n-ohmic drain contact 58. Other devices and methods are also disclosed.
    Type: Grant
    Filed: November 15, 1993
    Date of Patent: August 30, 1994
    Assignee: Texas Instruments Incorporated
    Inventors: Han-Tzong Yuan, Donald L. Plumton, Tae S. Kim, Jau-Yuann Yang
  • Patent number: 5252512
    Abstract: GaAs films compensated with TEOV to reduce free electron concentration are grown having superior morphology by heating the TEOV above the temperature used in the prior art, filtering the other constituents but not the TEOV, and reducing the arsenic ambient during the preliminary heating phase.
    Type: Grant
    Filed: October 19, 1992
    Date of Patent: October 12, 1993
    Assignee: United Technologies Corporation
    Inventors: Alexander J. Shuskus, Melvyn E. Cowher
  • Patent number: 5231037
    Abstract: This is a method of forming a vertical transistor device. The method comprises: forming a n-type source layer 12; forming a p+ carbon doped gate layer 14; forming a gate structure from the gate layer; and forming a n-type drain layer 16 over the gate structure to provide a buried carbon doped gate structure. The buried carbon doped gate structure provides a very small device with favorable on-resistance, junction capacitance, gate resistance, and gate driving voltage. Other devices and methods are also disclosed.
    Type: Grant
    Filed: April 30, 1992
    Date of Patent: July 27, 1993
    Assignee: Texas Instruments Incorporated
    Inventors: Han-Tzong Yuan, Tae S. Kim, Francis J. Morris
  • Patent number: 5183779
    Abstract: A method is disclosed for the incorporation of relatively high vapor pressure elements into good quality GaAs at extremely low T.sub.s using the migration enhanced epitaxy techinque. Zinc was doped in GaAs material grown at a low T.sub.s of 120.degree. C. Zinc may thus be used as a p-type dopant replacing more toxic Be. Similarly, other high vapor pressure elements can be incorporated much more efficiently into the material grown at low T.sub.s.
    Type: Grant
    Filed: May 3, 1991
    Date of Patent: February 2, 1993
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Bijan Tadayon, Saied Tadayon
  • Patent number: 5096856
    Abstract: The disclosure relates to a method of forming in situ phosphorous doped polysilicon wherein a surface upon which phosphorous doped polysilicon is to be deposited is placed in a vacuum furnace and, after low pressure HCl cleaning of the surface and furnace, a predetermined ratio of silane and a gaseous phosphorous containing compound taken from the class consisting of phosphorous trichloride, tertiary butyl phosphine, isobutyl phosphine, trimethyl phosphate and tetramethyl phosphate are simultaneously passed through the furnace at predetermined pressure and temperature to provide a uniformly phosphorous doped layer of polysilicon on the surface.
    Type: Grant
    Filed: October 14, 1989
    Date of Patent: March 17, 1992
    Assignee: Texas Instruments Incorporated
    Inventor: Dean W. Freeman
  • Patent number: 5068204
    Abstract: A blue light emitting diode which has a multiple layer structure and is grown on a semiconductor crystalline substrate, wherein zinc of a group II element of the periodic table, lithium, sodium, or potassium of group VI elements are used. These elements and their compounds are used as impurities to be introduced into the construction when it is at the condition of vapor growing. A blue light emitting diode has a pair of Ohmic electrodes, an n-type semiconductor layer and a p-type semiconductor layer. These layers are grown from a vapor phase on the substrate and sandwiched between the electrodes.
    Type: Grant
    Filed: March 25, 1988
    Date of Patent: November 26, 1991
    Assignee: Misawa Co. Ltd.
    Inventors: Hiroshi Kukimoto, Iwao Mitsuishi, Takashi Yasuda
  • Patent number: 5045496
    Abstract: A process is described for growing at least one layer doped with a transition element of cobalt on a substrate by introducing a source of indium, such as tri ethyl indium, (C.sub.2 H.sub.5).sub.3 In or, a source of a group V element, a source of the transition element, such as cobalt nitrosyl tricarbonyl CO(NO)(CO).sub.3, and a source of phosphorus, to the substrate heated in an inert or reducing atmosphere at a pressure substantially between 1/100 atmosphere and one atmosphere to grow at least one semi-insulating semiconductor layer on the substrate.
    Type: Grant
    Filed: May 13, 1988
    Date of Patent: September 3, 1991
    Assignee: Rockwell International Corporation
    Inventors: Kenneth L. Hess, Stanley W. Zehr
  • Patent number: 5026661
    Abstract: A method of growing zinc chalcogenide in an atmosphere which contains the vapor of di-.pi.-cyclopentadienyl manganese or di-.pi.-alkyl cyclopentadienyl manganese that serves as a source of manganese. By growing zinc chalcogenide in the above atmosphere, there is obtained a manganese-doped zinc chalcogenide having a very high crystal quality, which is very suitable for the active layer in light emitting devices.
    Type: Grant
    Filed: October 13, 1989
    Date of Patent: June 25, 1991
    Assignee: Hitachi, Ltd.
    Inventors: Masahito Migita, Osamu Kanehisa, Masatoshi Shiiki, Hajime Yamamoto
  • Patent number: 4962051
    Abstract: An improved method of fabricating a defect-free semiconductor layer and a semiconductor on insulator structure is provided by forming an isoelectronically doped semiconductor layer between a substrate and an semiconductor layer. The isoelectronic dopant atoms are different in atomic size than the atoms of the semiconductor material, thus misfit dislocations are created at the interface of the isoelectronically doped semiconductor layer due to lattice mismatch. Impurities and defects are not only gettered to the misfit dislocation sites, but are also prevented from propagating to the epitaxial layer. These misfit dislocations are thermally stable and are confined in a plane parallel to the interfaces of the isoelectronically doped semiconductor layer, thus very effective gettering agents. If the isoelectroncially doped semiconductor layer us also a heavily doped buried layer, no misfit dislocations are desired because the buried layer is an active device layer.
    Type: Grant
    Filed: November 18, 1988
    Date of Patent: October 9, 1990
    Assignee: Motorola, Inc.
    Inventor: H. Ming Liaw
  • Patent number: 4916088
    Abstract: A low dislocation density semiconductor device includes a first semiconductor layer of a III-V or II-VI semiconductor compound and alloying atoms on a non-metal substrate. The semiconductor compound usually has a large dislocation density. A predetermined position of the alloying atoms in the compound lattice structure can substantially reduce the compound dislocation density. Energy is applied to the alloying atoms so they are at the predetermined positions. The number of alloying atoms causes the semiconductor compound solubility limit to be exceeded. The layer is formed on a substrate of the III-V or II-VI semiconductor, such as gallium arsenide or another semiconductor, such as silicon or on an insulator such as sapphire. In the latter cases, the layer is formed on an intermediate layer having a lattice constant between that of the substrate and semiconductor compound.
    Type: Grant
    Filed: April 29, 1988
    Date of Patent: April 10, 1990
    Assignee: SRI International
    Inventors: John B. Mooney, Arden Sher
  • Patent number: 4889830
    Abstract: Zinc is diffused into indium phosphide in the presence of cadmium to prevent degradation of the indium phosphide surface.
    Type: Grant
    Filed: September 9, 1988
    Date of Patent: December 26, 1989
    Assignee: Northern Telecom Limited
    Inventors: Anthony J. Springthorpe, Agnes Margittai, David Eger
  • Patent number: 4877753
    Abstract: The disclosure relates to a method of forming in situ phosphorous doped polysilicon wherein a surface upon which phosphorous doped polysilicon is to be deposited is placed in a vacuum furnace and, after low pressure HCl cleaning of the surface and furnace, a predetermined ratio of silane and a gaseous phosphorous containing compound taken from the class consisting of phosphorous trichloride, tertiary butyl phosphine, isobutyl phosphine, trimethyl phosphate and tetramethyl phosphate are simultaneously passed through the furnace at predetermined pressure and temperature to provide a uniformly phosphorous doped layer of polysilicon on the surface.
    Type: Grant
    Filed: March 1, 1988
    Date of Patent: October 31, 1989
    Assignee: Texas Instruments Incorporated
    Inventor: Dean W. Freeman
  • Patent number: 4859627
    Abstract: A method of producing n-type III-V compound semiconductor comprises growing a plurality of monolayers of III-V compound semiconductor molecules on a III-V compound substrate; growing a single layer of group VI element on the III-V monolayers so as to occupy the lattice points for group V element by means of Atomic Layer Epitaxy process; decreasing the number of group VI element by exposing the single layer to the gas of group V element; and growing a plurality of monolayers of III-V compound semiconductor molecules on the group VI element-doped layer by means of the Atomic Layer Epitaxy process.
    Type: Grant
    Filed: July 1, 1988
    Date of Patent: August 22, 1989
    Assignee: NEC Corporation
    Inventor: Haruo Sunakawa
  • Patent number: 4845049
    Abstract: An n-type III-V compound semiconductor comprises a plurality of monolayers of III-V compound semiconductor molecules having a layer-by-layer structure of group III element and group V element laminated alternately, and a group VI element-doped monolayer. The group VI element-doped monolayer is inserted into the III-V compound semiconductor molecules by occupying lattice points which were occupied by the group V element. The layers of the semiconductor are grown by Atomic Layer Epitaxy process.
    Type: Grant
    Filed: March 28, 1988
    Date of Patent: July 4, 1989
    Assignee: NEC Corporation
    Inventor: Haruo Sunakawa
  • Patent number: 4843028
    Abstract: In a method for producing a spatially periodic semiconductor layer structure in the form of a superlattice composed of an alternating arrangement of strained semicondutor layers of at least two different semiconductor compositions forming at least one heterojunction, at least one of the semiconductor layers is provided with a doped layer which extends essentially parallel to the heterojunction and whose layer thickness is no greater than the thickness of the semiconductor layer in which it is produced.
    Type: Grant
    Filed: December 8, 1988
    Date of Patent: June 27, 1989
    Assignee: Icentia Patent-Verwaltungs-GmbH
    Inventors: Hans-Joest Herzog, Helmut Jorke, Horst Kibbel
  • Patent number: 4830982
    Abstract: Semi-insulating epitaxial layers of Group III-V based semiconductor compounds are produced by a MOCVD process through the use of organic titanium-based compounds. Resistivities greater than 1.times.10.sup.7 ohm/cm have been achieved.
    Type: Grant
    Filed: June 4, 1987
    Date of Patent: May 16, 1989
    Assignees: American Telephone and Telegraph Company, AT&T Bell Laboratories
    Inventors: Andrew G. Dentai, Charles H. Joyner, Jr., Timothy W. Weidman, John L. Zilko
  • Patent number: 4675709
    Abstract: A semiconductor quantized layered structure comprising first and second different semiconductor materials comprising compound semiconductors from both the Group III and Group V elements and forming a plurality of alternate layers, each interfaced to its adjacent layer in a semiconductor homojunction or heterojunction. The bottom of the conduction bands of the first and second materials are at different energy levels and the tops of the valence bands of the first and second materials are at different energy levels. The bottoms of the conduction bands of the first and second materials form a plurality of serially arranged potential wells and barriers due to differences in the band structures of the different materials forming alternate layers and the interfacing of the layers forming heterojunctions so that the thinness of the layers will spatially localize electrons to obtain quantized electron states in one dimension transverse to the longitudinal extent of said layers.
    Type: Grant
    Filed: January 21, 1986
    Date of Patent: June 23, 1987
    Assignee: Xerox Corporation
    Inventors: Donald R. Scifres, Robert D. Burnham
  • Patent number: 4632710
    Abstract: An epitaxially grown high resistivity crystalline layer of gallium arsenide is produced in a reactor vessel with a predetermined amount of carbon dioxide introduced during growth of the high resistivity gallium arsenide (GaAs) crystalline layer to provide carbon as a dopant. Thus, a plurality of carbon atoms is provided in the crystal, such carbon atoms having electrons at energy levels between a valance energy band and a conduction energy band of the GaAs crystal. With these energy levels, the carbon atoms are substantially ionized at room temperature by accepting a plurality of electrons from the valance band of the GaAs. The presence of these carbon ions in the crystal compensates for a stoichiometric defect which occurs during epitaxial growth of the GaAs crystalline layer. This results in a high resistivity layer which provides a buffer layer between a GaAs substrate and an active GaAs layer.
    Type: Grant
    Filed: May 10, 1983
    Date of Patent: December 30, 1986
    Assignee: Raytheon Company
    Inventor: H. Barteld Van Rees
  • Patent number: H368
    Abstract: A method of improving field-effect transistors, and the product thereof, wherein the resistivity of the upper layer of the source-gate channel region of a GaAs field-effect transistor (FET) may be selectively raised is disclosed. Impurity ions are implanted in the source-gate channel region followed by a much shallower implantation of boron in the same region. The boron ion concentration should exceed the N+ impurity ion concentration by a factor of 2 or more.
    Type: Grant
    Filed: September 16, 1980
    Date of Patent: November 3, 1987
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Max N. Yoder