Stability Or Viscosity Affecting Patents (Class 149/108.8)
  • Patent number: 9540230
    Abstract: A Microelectromechanical systems (MEMS) structure comprises a MEMS wafer. A MEMS wafer includes a handle wafer with cavities bonded to a device wafer through a dielectric layer disposed between the handle and device wafers. The MEMS wafer also includes a moveable portion of the device wafer suspended over a cavity in the handle wafer. Four methods are described to create two or more enclosures having multiple gas pressure or compositions on a single substrate including, each enclosure containing a moveable portion. The methods include: A. Forming a secondary sealed enclosure, B. Creating multiple ambient enclosures during wafer bonding, C. Creating and breaching an internal gas reservoir, and D. Forming and subsequently sealing a controlled leak/breach into the enclosure.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: January 10, 2017
    Assignee: INVENSENSE, INC.
    Inventors: Michael Daneman, Martin Lim, Kegang Huang, Igor Tchertkov
  • Patent number: 9190190
    Abstract: The present invention provides for an electrically insulating fluid or material of high relative permittivity or dielectric constant. The fluid has a low conductivity and high relative strength and is applicable to pulsed power drilling applications.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: November 17, 2015
    Assignee: SDG, LLC
    Inventor: William M. Moeny
  • Patent number: 8911575
    Abstract: Moldable explosives containing chlorinated and/or fluorinated oils and waxes are described which exhibit significant energetic characteristics while at the same time possessing desirable IM character. Such moldable explosives are potential replacements for the C4 compositions known and used in the art.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: December 16, 2014
    Assignee: The United States of America as Represented by the Secretary of the Army
    Inventors: Anthony R. Di Stasio, Sanjeev K. Singh, Daniel Zaloga, Rajen Patel
  • Patent number: 8784585
    Abstract: A gas generator 10 includes an autoignition composition that contains an alkali metal chlorate such as potassium chlorate as an oxidizer, a carboxylic acid such as DL-tartaric acid as a fuel, and a desiccant in operable communication therewith. Gas generating systems 180 such as vehicle occupant protection systems 180, containing the gas generator 10, are also provided.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: July 22, 2014
    Assignee: TK Holdings Inc.
    Inventors: Sean P. Burns, Deborah L. Hordos, Jason Newell
  • Patent number: 8778105
    Abstract: The invention concerns copper azide containing carbon nanotubes. The invention also concerns methods of producing such nanotubes by placing CuO nanoparticles within carbon nanotubes to produce CuO-containing carbon nanotubes, contacting CuO-containing carbon nanotubes with hydrogen to produce reduced nanotubes; and contacting the reduced nanotubes with hydrazoic acid to produce copper azide containing carbon nanotubes.
    Type: Grant
    Filed: August 28, 2013
    Date of Patent: July 15, 2014
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventors: Yury Gogotsi, Valarie Pelletier, Farhad Forohar, Magdy Bichay
  • Patent number: 8721813
    Abstract: Bimetallic alloys prepared in a ball milling process, such as iron nickel (FeNi), iron palladium (FePd), and magnesium palladium (MgPd) provide in situ catalyst system for remediating and degrading nitro explosive compounds. Specifically, munitions, such as, 2,4,6-trinitrotoluene (TNT), cyclo-1,3,5-trimethylene-2,4,6-trinitramine (RDX), nitrocellulose and nitroglycerine that have become contaminants in groundwater, soil, and other structures are treated on site to remediate explosive contamination.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: May 13, 2014
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Christian Clausen, III, Cherie Geiger, Michael Sigman, Rebecca Fidler
  • Patent number: 8696837
    Abstract: The present invention is directed to an explosive composition comprised of heavy ANFO and expanded polymeric beads that have a density that is less than the density of the heavy ANFO. The expanded polymeric beads have a size that is determined or based on the size of ammonium nitrate prills used in the heavy ANFO portion of the composition. In one embodiment, the expanded polymeric beads that are utilized in the composition are at least 70% of the lower limit of the mesh size of the predominant ammonium nitrate prill mesh size. In another embodiment, the expanded polymeric beads are at least 70% of the a size that is related to the average mesh size of the ammonium nitrate prills.
    Type: Grant
    Filed: October 10, 2010
    Date of Patent: April 15, 2014
    Inventor: Kevin H. Waldock
  • Patent number: 8647451
    Abstract: A method of manufacturing an explosive testing agent is disclosed. The method includes synthesizing hydrogen bronze nanoparticles and placing the nanoparticles on a test platform.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: February 11, 2014
    Assignee: The Board of Regents for Oklahoma State University
    Inventors: Allen Wallace Apblett, Nicholas Ferdinand Materer
  • Patent number: 8641843
    Abstract: The present invention provides a simulant material comprising a primary explosive and a carrier.
    Type: Grant
    Filed: January 8, 2009
    Date of Patent: February 4, 2014
    Assignee: Rafael, Advanced Defense Systems Ltd.
    Inventors: Shulman Hagit, Yael Cohen-Arazi, Edith Sokol, Moshit Yaskin-Harush
  • Patent number: 8641842
    Abstract: Propellant compositions include an energetic binder, such as nitrocellulose, and a stabilized, encapsulated red phosphorous as a ballistic modifier. The propellant composition may additionally include an energetic plasticizer, such as nitroglycerine. For example, the propellant composition may be formed by mixing a double or multi base propellant that includes nitrocellulose plasticized with nitroglycerine with the stabilized, encapsulated red phosphorus. The propellant compositions may be substantially lead-free and may exhibit improved ballistic properties. Methods of forming such propellant compositions and an ordnance device including such propellant compositions are also disclosed.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: February 4, 2014
    Assignee: Alliant Techsystems Inc.
    Inventors: Matthew T. Hafner, Ruben Balangue, Danny D. Clark, John William Westbrook, III
  • Patent number: 8632642
    Abstract: An explosive component includes a first storage container holding a fuel, a second storage container holding an oxidizer, a mixer to mix the fuel and the oxidizer together into an energetic mixture, and a third storage container to hold the energetic mixture.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: January 21, 2014
    Assignee: Raytheon Company
    Inventor: Ronald J. Butte
  • Patent number: 8617327
    Abstract: The present invention is an electrically controlled propellant comprising a binder, an oxidizer, and a cross-linking agent. The boric acid (the cross-linking agent) has been found to function as a cross-linking agent for the high molecular binder used to make the propellant, thereby improving the composition's ability to withstand combustion without melting. The present invention also may include 5-aminotetrazole (5-ATZ) as a stability-enhancing additive. The binder of the present invention may include polyvinylalcohol (PVA) and/or the co-polymer of polyvinylalcohol/polyvinylamine nitrate (PVA/PVAN).
    Type: Grant
    Filed: October 23, 2012
    Date of Patent: December 31, 2013
    Assignee: Digital Solid State Propulsion LLC
    Inventors: Arthur Katzakian, Charles Grix
  • Patent number: 8603271
    Abstract: Method and device for mixing and initiating a pyrotechnic charge, comprising at least one coherent porous fuel structure (16) and at least one oxidizer (8). According to the invention, the coherent porous fuel structure (16) and the oxidizer (8) are placed apart in a mixing device (1, 20) to prevent unintentional ignition, and in which the oxidizer (8), in response to the action of a force upon the mixing device (1, 20), for example upon firing of an artillery shell, is transported into the coherent porous fuel structure (16), after which the obtained pyrotechnic charge is initiated after a set time delay.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: December 10, 2013
    Assignee: BAE Systems Bofors AB
    Inventors: Mats Runemard, Christian Vieider
  • Patent number: 8603270
    Abstract: The present invention provides a method of using a neutral ionic liquid to at least one of stabilize a peroxidic explosive and to produce a stable solution of the peroxidic explosive which includes providing the neutral ionic liquid and using the neutral ionic liquid to at least one of stabilize the peroxidic explosive and to produce the stable solution of the peroxidic explosive. The present invention further provides a stable composition which includes a solution of at least one neutral ionic liquid and a detectable amount of a peroxidic explosive, a method of production thereof, and a method of use thereof as an odor sample.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: December 10, 2013
    Assignees: Rheinische Friedrich-Wilhelms-Universitaet Bonn, Diehl BGT, Defence GmbH & Co. KG
    Inventors: Siegfried Waldvogel, Carsten Siering, Daniel Lubczyk, Joerg Loebau, Arno Hahma
  • Patent number: 8540828
    Abstract: A primer composition that includes red phosphorus having an acid scavenger and a polymer thereon. The primer composition includes at least one other component that is substantially free of lead. The other component is at least one oxidizer, or at least one oxidizer and at least one of at least one secondary explosive composition and at least one energetic binder. The primer composition optionally includes at least one element having an ionic charge to ionic radius ratio of 4 or of 8, such as magnesium, zirconium, aluminum, silicon, titanium, tungsten, alloys thereof, and combinations thereof. The red phosphorus and the at least one oxidizer are present in the primer composition at approximately stoichiometric amounts. An ordnance element including the primer composition is also disclosed.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: September 24, 2013
    Assignee: Alliant Techsystems Inc.
    Inventors: Randall T. Busky, Tod R. Botcher, Joel L. Sandstrom, Jack A. Erickson
  • Publication number: 20130139716
    Abstract: This invention relates to novel salt compositions and to explosive compositions comprising said salt compositions. The salt compositions are useful as emulsifiers in the explosive compositions. The explosive compositions are water-in-oil emulsion explosives.
    Type: Application
    Filed: June 22, 2011
    Publication date: June 6, 2013
    Applicant: THE LUBRIZOL CORPORATION
    Inventors: Thomas J. Wolak, Christopher J. Kolp, Antonio Mastrangelo, Barry Love
  • Patent number: 8444784
    Abstract: Insensitive munition-type explosive material and methods for forming insensitive munition-type explosive material are provided. In an exemplary embodiment, an insensitive munition-type explosive material comprises a particle of BNCP and a surfactant-comprising shell that encapsulates the particle of BNCP.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: May 21, 2013
    Assignee: Raytheon Company
    Inventors: Sami Daoud, Thomas R. Berger, Michael J. Villeburn
  • Patent number: 8425702
    Abstract: An ionic liquid is disclosed. A precursor composition that comprises at least one ionic liquid and at least one energetic material is also disclosed, as is a method of synthesizing an ionic liquid and a method of desensitizing an explosive composition.
    Type: Grant
    Filed: July 6, 2011
    Date of Patent: April 23, 2013
    Assignee: Alliant Techsystems Inc.
    Inventors: Steven M. Nicolich, Alexander J. Paraskos, Daniel W. Doll, Gary K. Lund, Wendy A. Balas
  • Patent number: 8409376
    Abstract: Certain embodiments disclosed herein relate to compositions, methods, devices, systems, and products regarding frozen particles. In certain embodiments, the frozen particles include materials at low temperatures. In certain embodiments, the frozen particles provide vehicles for delivery of particular agents. In certain embodiments, the frozen particles are administered to at least one biological tissue.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: April 2, 2013
    Assignee: The Invention Science Fund I, LLC
    Inventors: Edward S. Boyden, Daniel B. Cook, Roderick A. Hyde, Eric C. Leuthardt, Nathan P. Myhrvold, Elizabeth A. Sweeney, Lowell L. Wood, Jr.
  • Patent number: 8382921
    Abstract: An apparatus for compressing powders and the like including a head assembly with a distensible elastic platen mounted in a chambered header plate containing a pressurizing fluid. The elastic platen distends in response to the pressurizing fluid. Further, a base assembly includes a rigid platen mounted in a base plate. The rigid platen includes a face with at least one cavity, into which is added powder to be compressed. The elastic platen is aligned with the rigid platen, and during compression, the two platens may be held firmly in contact. The pressurizing fluid pumped into the head assembly causes the elastic platen to deform forming a single distention per cavity. The distensions compress the powder to an optimal density. The apparatus safely and easily compact multiple small samples of explosives and the like into miniature charges.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: February 26, 2013
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Gerald R. Laib, Michael Beggans
  • Patent number: 8328966
    Abstract: A method for making miniature explosive powder charges or other compressible materials, including providing a material to be compressed into multiple cavities of a rigid platen, and positioning an elastic platen in contact with the rigid platen. The elastic platen is mounted in a head assembly having a pressurizing fluid. Evacuating the cavities and the material contained therein, and trapping fractious particles and vapors out-gassed from the material. Pressurizing fluid, which causes deformation of the elastic platen to form distensions that project into the cavities and compress the material into compacts. The pressurizing fluid is depressurized enabling the distensions to retract and the elastic platen to return to a non-deformed state. Finally, separating the elastic and rigid platens and collecting the compacts, which may be miniature explosive charges having an optimized density.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: December 11, 2012
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventors: Gerald R. Laib, Michael Beggans
  • Patent number: 8308879
    Abstract: Method and device for mixing and initiating a pyrotechnic charge, comprising at least one coherent porous fuel structure (16) and at least one oxidizer (8). According to the invention, the coherent porous fuel structure (16) and the oxidizer (8) are placed apart in a mixing device (1, 20) to prevent unintentional ignition, and in which the oxidizer (8), in response to the action of a force upon the mixing device (1, 20), for example upon firing of an artillery shell, is transported into the coherent porous fuel structure (16), after which the obtained pyrotechnic charge is initiated after a set time delay.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: November 13, 2012
    Assignee: BAE Systems Bofors AB
    Inventors: Mats Runemard, Christian Vieider
  • Patent number: 8282751
    Abstract: A sensitized explosive that comprises an explosive precipitated onto a sensitizer. The explosive is CL-20, PETN, RDX, HMX, or mixtures thereof and the sensitizer is aluminum, titanium, zirconium, magnesium, melamine, styrene, lithium aluminum hydride, or mixtures thereof. The sensitized explosive is used in a percussion primer that includes a bismuth compound and a melt binder. The bismuth compound is bismuth oxide, bismuth subnitrate, bismuth tetroxide, bismuth sulfide, or mixtures thereof and the melt binder is a wax having a melting point above ambient temperature, trinitrotoluene, poly(3,3-bis(azidomethyl)oxetane), poly(3-azidomethyl-3-methyloxetane), ethyl-3,5-dinitrobenzoate, or mixtures thereof. A gun cartridge and other primer-containing ordnance assemblies employing the percussion primer are also disclosed. Methods of forming the sensitized explosive and the percussion primer are also disclosed.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: October 9, 2012
    Assignee: Alliant Techsystems Inc.
    Inventors: Harold E. Johnston, Kirstin F. Warner, Reed J. Blau, Scott K. Lusk
  • Patent number: 8277584
    Abstract: The present invention provides an explosive composition of substantially reduced sensitivity and low flammability, being definable as an extremely insensitive detonating substance (EIDS) according to UN Regulations for the Transport of Dangerous Goods and comprising one or more explosive material 42-58% vol., one or more fire retardant material 15-26% vol. and a binder 20-36% vol.
    Type: Grant
    Filed: April 11, 2006
    Date of Patent: October 2, 2012
    Assignee: Rafael Advanced Defense Systems Ltd.
    Inventors: Yael Cohen-Arazi, Edith Sokol, Samuel Friling, Ilan Shaked
  • Patent number: 8273197
    Abstract: Pyrotechnic priming charge (1) intended to be used preferably for starting up one or more ignition chains, comprising a coherent porous fuel structure (2) and at least one oxidizer (4). According to the invention, the primer also comprises a moisture inhibitor (5) applied to the surface of the primer with a view to increasing the safety of the primer and reducing the risk of unintentional ignition due to breakdown of the oxidizer under the influence of ambient moisture and temperature.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: September 25, 2012
    Assignee: Bae Systems Bofors AB
    Inventor: Stefan Röstlund
  • Patent number: 8226782
    Abstract: A downhole device having an explosive component includes a high temperature stable explosive having thermal stability greater than 200° C.
    Type: Grant
    Filed: July 10, 2008
    Date of Patent: July 24, 2012
    Assignee: Schlumberger Technology Corporation
    Inventor: Philip Kneisl
  • Patent number: 8221565
    Abstract: Methods of making and resultant compositions thereof, which include a gas generant having a coating including an inorganic combustion inhibitor. Such coated gas generants are useful in pyrotechnic compositions and ignition materials, and may be employed, for example, in inflatable restraint systems. The ratio of coated and uncoated gas generant bodies within an airbag inflator may be tailored to provide S-curve inflation performance. Spray application of aqueous mixture including the combustion inhibitor onto the gas generant body provides a rapid way to achieve a thin but robust coating.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: July 17, 2012
    Assignee: Autoliv ASP, Inc.
    Inventors: Ivan V. Mendenhall, Gary K. Lund, Brett Hussey
  • Patent number: 8197620
    Abstract: The present invention relates to a process for determining the sensitive or insensitive nature of a crystalline hexogen. Said process comprises: the formulation of said crystalline hexogen in a matrix; the analysis of a sample of said matrix charged with said crystalline hexogen by differential scanning calorimetry; said matrix consisting essentially of at least one liquid polymer that is suitable for the formulation of binders for energetic materials charged with nitro organic explosives; and of at least one adsorbent for the volatile organic compounds, which is stable at the operating temperature of the analysis and which has low affinity for water. The present invention also relates to the crystalline hexogen in such a matrix.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: June 12, 2012
    Assignee: Eurenco
    Inventors: Christian Spyckerelle, Geneviéve Eck, Jean Guillaumin
  • Publication number: 20120090744
    Abstract: The present invention provides a method of using a neutral ionic liquid to at least one of stabilize a peroxidic explosive and to produce a stable solution of the peroxidic explosive which includes providing the neutral ionic liquid and using the neutral ionic liquid to at least one of stabilize the peroxidic explosive and to produce the stable solution of the peroxidic explosive. The present invention further provides a stable composition which includes a solution of at least one neutral ionic liquid and a detectable amount of a peroxidic explosive, a method of production thereof, and a method of use thereof as an odor sample.
    Type: Application
    Filed: June 18, 2010
    Publication date: April 19, 2012
    Applicants: Diehl Bgt. Defence GmbH & Co., KG, Rheinische Friedrich-Wilhelms-Universitaet Bonn
    Inventors: Siegfried Waldvogel, Carsten Siering, Daniel Lubczyk, Joerg Loebau, Arno Hahma
  • Patent number: 8123878
    Abstract: A gas generating system includes a gas generant material for generating gases upon combustion thereof, and an amount of liquid coolant for cooling the generated gases.
    Type: Grant
    Filed: June 2, 2008
    Date of Patent: February 28, 2012
    Assignee: TK Holdings, Inc.
    Inventors: Robert M. Krupp, Brian A. Mayville
  • Patent number: 8114228
    Abstract: The present invention provides a liquid gas generating composition comprising the following (a) to (c) components, wherein the content ratio of (b) component is 0.5 mass % or more and less than 5.0 mass %: (a) hydroxyammonium nitrate; (b) a thickening stabilizer; and (c) water.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: February 14, 2012
    Assignees: Daicel Chemical Industries, Ltd., Japan Aerospace Exploration Agency
    Inventors: Keiichi Hori, Toshiyuki Katsumi, Shogo Tomiyama, Syouji Kobayashi, Ko Murakami
  • Patent number: 8114231
    Abstract: A method for gassing an emulsion explosives to sensitize the explosive to detonation and/or for density modification is described. The method comprises reacting a compound having an enol group, or a deprotonated enolate form of the enol group, with a nitrosating agent to generate nitric oxide to gas the explosive. The compound reacted with the nitrosating agent can be a lactone such as ascorbic acid. Dinitrogen trioxide is particularly useful as the nitrosating agent.
    Type: Grant
    Filed: October 26, 2006
    Date of Patent: February 14, 2012
    Assignee: Newcastle Innovation Limited
    Inventors: Gabriel da Silva, Bogdan Z. Dlugogorsk, Eric M. Kennedy
  • Patent number: 8092622
    Abstract: Bimetallic alloys prepared in a ball milling process, such as iron nickel (FeNi), iron palladium (FePd), and magnesium palladium (MgPd) provide in situ catalyst system for remediating and degrading nitro explosive compounds. Specifically, munitions, such as, 2,4,6-trinitrotoluene (TNT), cyclo-1,3,5-trimethylene-2,4,6-trinitramine (RDX), nitrocellulose and nitroglycerine that have become contaminants in groundwater, soil, and other structures are treated on site to remediate explosive contamination.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: January 10, 2012
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Christian Clausen, Cherie Geiger, Michael Sigman, Rebecca Fidler
  • Patent number: 8062442
    Abstract: Triacetone triperoxide (TATP) and other explosives of the peroxide family are safely degraded in situ. Nano and micron size metal particles in an elemental state include pure iron and magnesium or iron and magnesium particles that are mechanically alloyed with palladium and nickel. The metal particles are used in both the elemental state and in emulsions that are made from water, a hydrophobic solvent, such as corn oil, and a food-grade nonionic surfactant. The neat metals and emulsified zero valent metals (EZVM) safely degrade TATP with the major degradation product being acetone. The EZVM system absorbs and dissolves the TATP into the emulsion droplets where TATP degradation occurs. EZVM systems are ideal for degrading dry TATP crystals that may be present on a carpet or door entrance. Both the neat metal system and the emulsion system (EZVM) degrade TATP in an aqueous slurry.
    Type: Grant
    Filed: April 3, 2007
    Date of Patent: November 22, 2011
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Christian Clausen, III, Cherie L. Geiger, Michael Sigman, Rebecca Fidler
  • Patent number: 8012277
    Abstract: An ionic liquid is disclosed A precursor composition that comprises at least one ionic liquid and at least one energetic material is also disclosed, as is a method of synthesizing an ionic liquid and a method of desensitizing an explosive composition.
    Type: Grant
    Filed: April 13, 2007
    Date of Patent: September 6, 2011
    Assignees: Alliant Techsystems Inc.
    Inventors: Steven M. Nicolich, Alexander J. Paraskos, Daniel W. Doll, Gary K. Lund, Wendy A. Balas
  • Publication number: 20110209805
    Abstract: A highly-filled paste, and a method and device of de-aerating and injecting the paste, the paste including: (a) a solid filler; (b) an organic binder, and (c) a residual gas, wherein the paste contains at least 80 volume-% of the solid filler and has a viscosity exceeding 100 kilopascal·seconds, wherein the filler, binder, and residual gas are intimately mixed so as to form a substantially homogeneous paste, and wherein a composition of the solid filler, binder, and residual gas is selected such that the homogeneous paste has: an average density greater than 98.5% of a Theoretical Maximum Density (TMD).
    Type: Application
    Filed: April 5, 2011
    Publication date: September 1, 2011
    Applicant: RAFAEL ADVANCED DEFENSE SYSTEMS LTD.
    Inventors: Tamar Kaully, Dganit Shacham, Haim Baniste, David Tidhar, Corrine Nadiv
  • Patent number: 8007607
    Abstract: Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: August 30, 2011
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Michael A. Daniels, Ronald J. Heaps, Eric D Steffler, William D. Swank
  • Patent number: 7976654
    Abstract: High explosives suitable for filling very small volume loading holes in micro-electric initiators for micro-electro-mechanical mechanisms, used as safe and arm devices, are prepared from slurries of crystalline energetic materials including organic liquid and applied using various methods. These methods include swipe loading, pressure loading and syringe loading. The organic liquid serves as a volatile mobile phase in the slurry so as to partially dissolve the energetic material so that, upon evaporation of the mobile phase, the energetic material precipitates and adheres to the loading hole.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: July 12, 2011
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Daniel Stec, III, Gartung Cheng, Brian E. Fuchs, Gerard Gillen, Neha Mehta
  • Patent number: 7967929
    Abstract: Secondary crystalline high explosives are disclosed which are suitable for filling very small volume loading holes in micro-electric initiators for micro-electro-mechanical mechanisms (MEMS), used as safe and arm (S&A) devices. The explosives are prepared by adding the such a high explosive to an aqueous first volatile mobile phase, adding such a high explosive to a non-aqueous second volatile mobile phase, mixing the first and second volatile mobile phases and then loading the combined phases into the MEMS device and allowing the aqueous and non-aqueous solvents to evaporate depositing the high explosive. Enhanced adhesion between the deposited high explosive and enhanced rheological properties can be obtained by adding a polymeric binder to both mobile phases.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: June 28, 2011
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Daniel Stec, III, Amy Wilson, Brian E. Fuchs, Neha Mehta, Paula Cook
  • Patent number: 7947137
    Abstract: An explosive device and methods for forming same, the device comprising a portion of nitrous oxide and a portion of fuel. In one example, the explosive device may include a first storage area containing said portion of nitrous oxide, and a second storage area containing said portion of fuel, wherein the first storage area selectively maintains the portion of nitrous oxide separated from the fuel in the second storage area prior to detonation of the explosive device. In another example, in the event the explosive fails to detonate, the explosive device may include a vent valve for discharging the nitrous oxide from the explosive device to reduce or eliminate its explosive characteristics. The explosive device can be used for various applications, including but not limited to military weapons, pyrotechnic devices, or civil blasting explosives, for example.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: May 24, 2011
    Assignee: Pioneer Astronautics
    Inventor: Robert M. Zubrin
  • Patent number: 7942988
    Abstract: A shaped, flexible fuel and energetic system is presented. The shaped, flexible fuel comprises at least one polymeric binding material and porous silicon particles dispersed throughout the polymeric binding material. The porous silicon particles are prepared from a metallurgical grade silicon powder. The shaped, flexible fuel preferably includes shapes such as: an article, a film, a wire and a tape. The energetic system comprises the shaped, flexible fuel portion used alone or in combination with at least one oxidizer.
    Type: Grant
    Filed: May 8, 2008
    Date of Patent: May 17, 2011
    Assignee: Vesta Research, Ltd.
    Inventors: Shanthi Subramanian, Declan Farrell, Santosh Y. Limaye
  • Patent number: 7938920
    Abstract: An explosive composition is provided that is comprised of a Heavy ANFO and grain hulls. In one embodiment, the grain hulls are comprised of rice hulls. The grain hulls serve both as an inert bulking additive that reduces the density of the composition and as a sensitizer that reduces the energy needed to reliably detonate the composition. Also provided is a method for manufacturing an explosive composition comprised of Heavy ANFO and grain hulls, such as rice hulls. Additionally, a method of using an explosive comprised of ANFO and grain hulls in a mining operation is disclosed.
    Type: Grant
    Filed: October 17, 2005
    Date of Patent: May 10, 2011
    Inventors: Kevin H. Waldock, Christopher J. Kulish
  • Patent number: 7931763
    Abstract: Adding nanoparticles as a catalyst to solid propellant fuel to increase and enhance burn rates of the fuel by up to 10 times or more and/or modifying the pressure index. A preferred embodiment uses TiO2 nanoparticles mixed with a solid propellant fuel, where the nanoparticles are approximately 2% or less of total propellant mixture. The high surface to volume ratio of the nanoparticles improve the performance of the solid propellant fuel.
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: April 26, 2011
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Eric Petersen, Jennifer Small, Metthew Stephens, Jason Arvanetes, Sudipta Seal, Sameer Deshpande
  • Patent number: 7927439
    Abstract: The invention is a method and a composition where, on command, a distributed number of micron size voids are created in an energetic material. The voids are hot spots, which change the shock compression sensitivity of the explosive composition by a factor of 2 to 10. The composition contains SMART materials, which are magnetostrictive materials having a large magnetostrictive coefficient, and in a matter of microseconds following the application of an external electromagnetic field, each of the magnetostrictive nano-structures expands and contracts forming a void, where the sum of the voids increases the shock compression sensitivity of the composition.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: April 19, 2011
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Jerry W. Forbes, Chak P. Wong, G. William Lawrence
  • Patent number: 7896987
    Abstract: The present invention is a bi-propellant system comprising a gelled liquid propane (GLP) fuel and a gelled MON-30 (70% N2O4+30% NO) oxidizer. The bi-propellant system is particularly well-suited for outer planet missions greater than 3 AU from the sun and also functions in earth and near earth environments. Additives such as powders of boron, carbon, lithium, and/or aluminum can be added to the fuel component to improve performance or enhance hypergolicity. The gelling agent can be silicon dioxide, clay, carbon, or organic or inorganic polymers. The bi-propellant system may be, but need not be, hypergolic.
    Type: Grant
    Filed: December 2, 2005
    Date of Patent: March 1, 2011
    Assignee: CFD Research Corporation
    Inventor: Roberto Di Salvo
  • Publication number: 20100263774
    Abstract: Adding nanoparticles as a catalyst to solid propellant fuel to increase and enhance burn rates of the fuel by up to 10 times or more and/or modifying the pressure index. A preferred embodiment uses TiO2 nanoparticles mixed with a solid propellant fuel, where the nanoparticles are approximately 2% or less of total propellant mixture. The high surface to volume ratio of the nanoparticles improve the performance of the solid propellant fuel.
    Type: Application
    Filed: October 16, 2009
    Publication date: October 21, 2010
    Inventors: Eric Petersen, Jennifer Small, Matthew Stephens, Jason Arvanetes, Sudipta Seal, Sameer Deshpande
  • Patent number: 7789981
    Abstract: A method to substantially desensitize a metastable intermolecular composite material to electrostatic discharge and friction comprising mixing the composite material with an organic diluent and removing enough organic diluent from the mixture to form a mixture with a substantially putty-like consistency, as well as a concomitant method of recovering the metastable intermolecular composite material.
    Type: Grant
    Filed: August 27, 2007
    Date of Patent: September 7, 2010
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: James R. Busse, Robert C. Dye, Timothy J. Foley, Kelvin T. Higa, Betty S. Jorgensen, Victor E. Sanders, Steven F. Son
  • Patent number: 7648602
    Abstract: A method for chemically neutralizing a nitroarene explosive uses a nitroarene hypergol having an ?,?-amine and an accelerant that is applied to the explosive composition to cause ignition of the explosive composition. The method may be used to neutralize active mines.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: January 19, 2010
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: William M. Koppes, David M. Rosenberg, Kerry A. Clark, Eric S. Schlegel, Brian W. Vos, Jody W. Lang, Andrea D. Warren
  • Publication number: 20090314397
    Abstract: A process for producing a pyrotechnic delay composition includes admixing an oxidizer, a fuel, a surfactant and a liquid, to form a paste or slurry. The paste or slurry is dried to remove the liquid and to obtain a solid product which, if necessary, is rendered into particulate form. Optionally, the solid particulate product is classified to obtain a pyrotechnic delay composition in particulate form.
    Type: Application
    Filed: September 19, 2007
    Publication date: December 24, 2009
    Applicant: African Explosives Limited
    Inventors: Clifford Gordon Morgan, Craig Rimmington
  • Publication number: 20070245750
    Abstract: The present invention is a method and apparatus for gelling liquid propane and other liquefied gasses. The apparatus includes a temperature controlled churn mixer, vacuum pump, liquefied gas transfer tank, and means for measuring amount of material entering the mixer. The method uses gelling agents such as silicon dioxide, clay, carbon, or organic or inorganic polymers, as well as dopants such as titanium, aluminum, and boron powders. The apparatus and method are particularly useful for the production of high quality rocket fuels and propellants.
    Type: Application
    Filed: October 23, 2006
    Publication date: October 25, 2007
    Inventors: Adam Elliott, Roberto DiSalvo, Phillip Shepherd, Ryan Kosier