Processes Of Making Patents (Class 149/109.6)
  • Patent number: 8037831
    Abstract: A method for effecting physicochemical transformations and detonation properties in a material using super-compressed detonation includes: providing an insensitive energetic material to be compressed; super-compressing the material by exposure to at least one of a normally or obliquely oriented cylindrical imploding shock wave, generated from a first detonation; effecting transformations from the super-compression in the material including increasing at least material density, structural transformations and electronic energy gap transitions relative to a material unexposed to the super-compression; exposing the super-compressed material to a second detonation; and effecting transformations from the second detonation in the material including increasing at least detonation pressure, velocity and energy density relative to a material unexposed to the super-compression and second detonation.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: October 18, 2011
    Assignee: Her Majesty the Queen in right of Canada, as represented by the Minister of National Defence
    Inventors: Fan Zhang, Stephen Burke Murray, Andrew J. Higgins
  • Patent number: 8025010
    Abstract: A quaternary salt is added at low concentrations to a solid propellant, thereby increasing the conductivity of the polymeric binder to provide for safe discharge of static electricity at relatively low potentials.
    Type: Grant
    Filed: September 18, 1990
    Date of Patent: September 27, 2011
    Assignee: Alliant Techsystems Inc.
    Inventor: Gary K. Lund
  • Patent number: 8017768
    Abstract: An improved method of preparing 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclo[5.5.0.05,9.03,11]dodecane) (HNIW) is disclosed. The compound is useful as a high energy, high density explosive or propellant oxidizer.
    Type: Grant
    Filed: April 5, 1994
    Date of Patent: September 13, 2011
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: William P. Norris, Arnold T. Nielsen
  • Patent number: 8012277
    Abstract: An ionic liquid is disclosed A precursor composition that comprises at least one ionic liquid and at least one energetic material is also disclosed, as is a method of synthesizing an ionic liquid and a method of desensitizing an explosive composition.
    Type: Grant
    Filed: April 13, 2007
    Date of Patent: September 6, 2011
    Assignees: Alliant Techsystems Inc.
    Inventors: Steven M. Nicolich, Alexander J. Paraskos, Daniel W. Doll, Gary K. Lund, Wendy A. Balas
  • Publication number: 20110209600
    Abstract: A highly-filled paste, and a method and device of de-aerating and injecting the paste, the paste including: (a) a solid filler; (b) an organic binder, and (c) a residual gas, wherein the paste contains at least 80 volume-% of the solid filler and has a viscosity exceeding 100 kilopascal·seconds, wherein the filler, binder, and residual gas are intimately mixed so as to form a substantially homogeneous paste, and wherein a composition of the solid filler, binder, and residual gas is selected such that the homogeneous paste has: an average density greater than 98.5% of a Theoretical Maximum Density (TMD).
    Type: Application
    Filed: April 5, 2011
    Publication date: September 1, 2011
    Applicant: RAFAEL ADVANCED DEFENSE SYSTEMS LTD.
    Inventors: Tamar Kaully, Dganit Shacham, Haim Baniste, David Tidhar, Corrine Nadiv
  • Patent number: 8007607
    Abstract: Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: August 30, 2011
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Michael A. Daniels, Ronald J. Heaps, Eric D Steffler, William D. Swank
  • Patent number: 8002914
    Abstract: A flash powder formulation for use in flash grenades that produces reduced smoke containing from about 10 percent by weight to about 60 percent by weight of zirconium hydride, from about 40 percent by weight to about 90 percent by weight CAN, and from zero percent by weight to about 5 percent by weight of a binder material.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: August 23, 2011
    Assignee: United States of America as represented by the Secretary of the Navy
    Inventors: Steven P. D'Arche, Travis Swanson
  • Patent number: 8002917
    Abstract: A method of adjusting the yield of a manufactured compound comprising primarily two energetic materials to yield a product comprising primarily one of the two energetic materials. Specifically, embodiments of the present invention provide a method of purifying a compound primarily comprising RDX and HMX to achieve a desired purity of RDX with an acceptable yield percentage. By adding sufficient acetonitrile (ACN) to the manufactured compound to dissolve it and form a solution; adding a pre-specified volume of water to the resultant solution and stirring sufficiently to precipitate at least the RDX; separating and drying the precipitate, a pre-specified purity and yield percentage of RDX may be obtained by varying the volume of water added. The process uses relatively environmentally benign recyclable solvents at ambient temperature and pressure reducing both environmental impact and energy costs.
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: August 23, 2011
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Veera M. Boddu, Reddy Damavarapu, Krishnaiah Abburi
  • Patent number: 7998290
    Abstract: A thermobaric munition including a composite explosive material, the composite explosive material having a high-explosive composition, and a detonable energetic material dispersed within the high-explosive composition, the detonable energetic material in the form of a thin film, the thin film having at least one layer composed at least in part by a reducing metal and at least one layer composed at least in part by a metal oxide. A related method includes tailoring the blast characteristics of high explosive composition to match a predetermined time-pressure impulse, the method including disbursing a detonable energetic material having a preselected reaction rate within the high-explosive composition, the detonable energetic material in the form of a thin film, the thin film having at least one layer composed at least in part by a reducing metal and at least one layer composed at least in part by a metal oxide.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: August 16, 2011
    Assignee: Lockheed Martin Corporation
    Inventors: Edward W. Sheridan, George D. Hugus, George W. Brooks
  • Patent number: 7993475
    Abstract: A firing agent which is used in a gas generating device of a vehicle occupant protection device together with a non-azide gas generating agent, for firing the non-azide gas generating agent, wherein the firing agent contains a fuel and an oxidizing agent and is configured to burn at a combustion speed higher than that of the non-azide gas generating agent; a method for using the firing agent; and a gas generating device of a vehicle occupant protection device using the firing agent.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: August 9, 2011
    Assignee: NOF Corporation
    Inventors: Kazuya Serizawa, Tomonori Tasaki, Katsuhiko Takahashi
  • Patent number: 7988801
    Abstract: Perchlorate-free green flare compositions are disclosed which, when burned, produce green smoke and flames. Methods of producing the compositions are also disclosed.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: August 2, 2011
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Robert G. Shortridge, Christina M. Yamamoto
  • Patent number: 7985309
    Abstract: The present invention relates to a solid formulation, more particularly to a pellet-type formulation that produces CO2 gas in a constant rate when contacting liquid acid. The pellet-type formulation of the invention is characterized in that the pellet is produced by the following: preparing a pellet by extrusion molding a composition that comprises a major amount of Sodium Carbonate (Na2CO3) and a minor amount of gelatin, and additionally a minor amount of synthetic resin that hardly reacts with acid; coating said pellet with a resin that hardly reacts with acid; and forming a recess or a hole at the center of the pellet. The present invention also relates to a process of preparing a pellet-type formulation that produces CO2 gas in a constant rate when contacting liquid acid.
    Type: Grant
    Filed: May 17, 2004
    Date of Patent: July 26, 2011
    Assignee: E-WHA Fresenius Kabi Inc.
    Inventor: Yong-Nyun Kim
  • Patent number: 7985310
    Abstract: This invention relates to granules comprising a homogenous mixture of metal flakes and/or metal powder and metal oxide powder, and a binder. The invention also relates to a process for producing such granules. The process includes the step of forming a mixture of metal flakes and/or metal powder and metal oxide powder, forming the mixture into a homogenous blend, adding the blend, together with a binder, to a granulator to form granules, and drying the granules. Granules so formed containing aluminum, aluminum oxide and iron oxide find particular use as sensitizers and energizers in explosives compositions.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: July 26, 2011
    Inventor: Denis Gordon Verity
  • Patent number: 7981393
    Abstract: A method of preparing salt of dinitramidic acid, comprising nitration of an initial compound with a nitrating acid mixture to form dinitramidic acid in a reaction mixture. A positive ion is added to the reaction mixture and forms with the dinitramide ion an ion pair complex which precipitates in the acidic reaction mixture, and the precipitate is separated from the mixture. The remaining spent acid can be reprocessed for recovery of acid for preparation of a new nitrating acid mixture. The preferred positive ion is the guanylurea ion which gives a precipitate of guanylurea dinitramide. The precipitate can be used as starting material for preparation of other dinitramide salts, such as KDN and ADN. The guanylurea ion can be formed in situ in the process by cyanoguanidine being reacted with the reaction mixture.
    Type: Grant
    Filed: January 21, 2005
    Date of Patent: July 19, 2011
    Assignee: Försvarets Materielverk
    Inventors: Carin Vörde, Henrik Skifs
  • Publication number: 20110168308
    Abstract: A thermobaric munition including a composite explosive material, the composite explosive material having a high-explosive composition, and a detonable energetic material dispersed within the high-explosive composition, the detonable energetic material in the form of a thin film, the thin film having at least one layer composed at least in part by a reducing metal and at least one layer composed at least in part by a metal oxide.
    Type: Application
    Filed: April 13, 2010
    Publication date: July 14, 2011
    Inventors: Edward W. Sheridan, George D. Hugus, George W. Brooks
  • Patent number: 7976654
    Abstract: High explosives suitable for filling very small volume loading holes in micro-electric initiators for micro-electro-mechanical mechanisms, used as safe and arm devices, are prepared from slurries of crystalline energetic materials including organic liquid and applied using various methods. These methods include swipe loading, pressure loading and syringe loading. The organic liquid serves as a volatile mobile phase in the slurry so as to partially dissolve the energetic material so that, upon evaporation of the mobile phase, the energetic material precipitates and adheres to the loading hole.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: July 12, 2011
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Daniel Stec, III, Gartung Cheng, Brian E. Fuchs, Gerard Gillen, Neha Mehta
  • Publication number: 20110162547
    Abstract: A firing mixture which contains explosives, oxidizing and reducing agents is characterized in that it contains one or several explosives which can be fired by laser light. Also disclosed is a process for producing the same and its use.
    Type: Application
    Filed: December 9, 2010
    Publication date: July 7, 2011
    Inventors: Rainer Hagel, Dieter Hofmann, Bodo Preis, Klaus Redecker, Wolfram Seebeck
  • Patent number: 7972454
    Abstract: A method of preparing a gassed water-in-oil emulsion explosives composition from a gasser solution of an inorganic nitrate, an ammonium species and an optional accelerator which is added to an emulsion explosive composition, reacts and forms gas bubbles is disclosed. The emulsion explosive composition is composed of a discontinuous aqueous phase, a continuous water immiscible organic phase, and an emulsifier. The reaction between the gasser solution and the emulsion explosive composition is such that the emulsifier does not undergo chemical attack.
    Type: Grant
    Filed: August 27, 2001
    Date of Patent: July 5, 2011
    Assignee: Orica Australia Pty Ltd.
    Inventors: Helen O'Hara, David Stow, David Edwin Yates
  • Patent number: 7964045
    Abstract: High explosive coatings and inks suitable for use in micro-electronic initiators for micro-electro-mechanical mechanisms used as safe and arm devices, are prepared from coating compositions of crystalline energetic materials and applied using various methods. These methods include wiping and spraying, as well as, pressure applications using a syringe or the like, and application of thick film ink to write specified patterns on a selected surface. A volatile mobile phase may be added to the coating composition to partially dissolve the energetic material so that, upon evaporation of the mobile phase, the energetic material precipitates and adheres to the selected surface.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: June 21, 2011
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Daniel Stec, III, Gartung Cheng, Brian E. Fuchs, Neha Mehta
  • Publication number: 20110139322
    Abstract: Perchlorate-free flare compositions are disclosed which, when burned, produce yellow smoke and flames. Methods of producing the compositions are also disclosed.
    Type: Application
    Filed: January 14, 2011
    Publication date: June 16, 2011
    Inventors: Christina M. Yamamoto, Robert G. Shortridge
  • Publication number: 20110132222
    Abstract: A thermobaric munition including a composite explosive material, the composite explosive material having a high-explosive composition, and a detonable energetic material dispersed within the high-explosive composition, the detonable energetic material in the form of a thin film, the thin film having at least one layer composed at least in part by a reducing metal and at least one layer composed at least in part by a metal oxide.
    Type: Application
    Filed: June 13, 2006
    Publication date: June 9, 2011
    Applicant: LOCKHEED MARTIN CORPORATION
    Inventors: Edward W. Sheridan, George D. Hugus, George W. Brooks
  • Publication number: 20110132505
    Abstract: The invention provides a method for gassing an explosive to sensitise the explosive and/or modify the density of the explosive. The method comprises reacting at least one oxidiser with at least one nitrogen containing compound in the explosive to generate nitrogen gas. The explosive is formulated to effect diffusion of the oxidiser and/or the compound into contact with each other, the nitrogen gas being generated by oxidation of the compound by the oxidiser. The invention extends to the explosive compositions themselves.
    Type: Application
    Filed: January 10, 2008
    Publication date: June 9, 2011
    Applicant: Newcastle Innovation Limited
    Inventors: Bogdan Zygmunt Dlugogorski, Eric Miles Kennedy, Mark Stuart Rayson, Gabriel Da Silva
  • Publication number: 20110132506
    Abstract: Perchlorate-free flare compositions are disclosed which, when burned, produce red smoke and flames. Methods of producing the compositions are also disclosed.
    Type: Application
    Filed: January 14, 2011
    Publication date: June 9, 2011
    Inventors: Robert G. Shortridge, Christina M. Yamamoto
  • Patent number: 7955453
    Abstract: A process for manufacturing gradient structures uses multiple jet-spraying mechanisms to form layers of distinct precursors into a gradient composition.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: June 7, 2011
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: John M. Kelley, Raafat H. Guirguis
  • Patent number: 7955451
    Abstract: A munition is described including a reactive fragment having an energetic material having a least one layer of a reducing metal or metal hydride and at least one layer of a metal oxide dispersed in a binder material. A method is also described including forming a energetic material; including combining the energetic material having a least one layer of a reducing metal or metal hydride and at least one layer of a metal oxide with a polymeric binder material to form a mixture; and shaping the mixture to form a reactive fragment. The munition may be in the form of a warhead, and the reactive fragment may be contained within a casing of the warhead.
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: June 7, 2011
    Assignee: Lockheed Martin Corporation
    Inventors: George D. Hugus, Edward W. Sheridan
  • Patent number: 7955452
    Abstract: A process for manufacture of explosive formulations containing a halogenated wax binder, involving dilution of the halogenated wax in a non-aqueous lacquer, slurring the explosive in an aqueous solution and applying heat and vacuum to yield a granular explosive which provides complete coating to avoid hot spots and is quickly pressable at lower temperature and pressure.
    Type: Grant
    Filed: March 10, 2009
    Date of Patent: June 7, 2011
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Sanjeev K. Singh, Philip Samuels, Christos Capellos, Barry Fishburn
  • Publication number: 20110120603
    Abstract: An explosive emulsion to be used in conjunction with a gas-producing agent, such as sodium nitrite, to form an explosive emulsion with a density between 0.50 g/cm3 and 0.90 g/cm3. The present invention also includes the method for producing the explosive emulsion. The explosive emulsion is stable for at least 96 hours with nitrogen bubbles, having a predetermined dimension range, homogenously distributed. To maintain this low-density explosive emulsion stable, between 84% and 95% by weight of an oxidizing solution is combined with 5% to 16% by weight of a fuel solution. The fuel solution includes solid cacao fat as a stabilizing agent and stearic acid to prevent the combination of the nitrogen bubbles. The method for producing the oxidizing solution includes combining ammonium nitrate, sodium nitrate, thiourea, urea, and water at a temperature between 80 and 90 degrees centigrade. In another step of the method, a fuel solution is produced by combining an emulsifier, oil, diesel No.
    Type: Application
    Filed: November 12, 2010
    Publication date: May 26, 2011
    Inventors: Pio Francisco Perez Cordova, Luis Alfredo Cardenas Lopez
  • Patent number: 7947137
    Abstract: An explosive device and methods for forming same, the device comprising a portion of nitrous oxide and a portion of fuel. In one example, the explosive device may include a first storage area containing said portion of nitrous oxide, and a second storage area containing said portion of fuel, wherein the first storage area selectively maintains the portion of nitrous oxide separated from the fuel in the second storage area prior to detonation of the explosive device. In another example, in the event the explosive fails to detonate, the explosive device may include a vent valve for discharging the nitrous oxide from the explosive device to reduce or eliminate its explosive characteristics. The explosive device can be used for various applications, including but not limited to military weapons, pyrotechnic devices, or civil blasting explosives, for example.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: May 24, 2011
    Assignee: Pioneer Astronautics
    Inventor: Robert M. Zubrin
  • Publication number: 20110108172
    Abstract: Embodiments of the present subject matter provide a compound and material that may be used as a lead-free primary explosive. An embodiment of the present subject matter provides the compound copper(I) nitrotetrazolate. Certain embodiments of the present subject matter provide methods for preparing lead-free primary explosives. The method includes: providing cuprous salt; providing water; providing 5-nitrotetrazolate salt; combining the cuprous salt, water and 5-nitrotetrazolate salt to form a mixture; and heating the mixture. The method may also include providing cuprous chloride and providing sodium 5-nitrotetrazolate. Certain embodiments of the present subject matter also provide methods for preparing copper(I) nitrotetrazolate. The method includes: providing cuprous salt; providing water; providing 5-nitrotetrazolate salt; combining the cuprous salt, water and 5-nitrotetrazolate salt to form a mixture; and heating the mixture.
    Type: Application
    Filed: October 8, 2010
    Publication date: May 12, 2011
    Applicant: PACIFIC SCIENTIFIC ENERGETIC MATERIALS COMPANY
    Inventors: JOHN W. FRONABARGER, Michael D. Williams, William B. Sanborn
  • Patent number: 7938920
    Abstract: An explosive composition is provided that is comprised of a Heavy ANFO and grain hulls. In one embodiment, the grain hulls are comprised of rice hulls. The grain hulls serve both as an inert bulking additive that reduces the density of the composition and as a sensitizer that reduces the energy needed to reliably detonate the composition. Also provided is a method for manufacturing an explosive composition comprised of Heavy ANFO and grain hulls, such as rice hulls. Additionally, a method of using an explosive comprised of ANFO and grain hulls in a mining operation is disclosed.
    Type: Grant
    Filed: October 17, 2005
    Date of Patent: May 10, 2011
    Inventors: Kevin H. Waldock, Christopher J. Kulish
  • Patent number: 7931764
    Abstract: A method to substantially desensitize a metastable intermolecular composite material to electrostatic discharge and friction comprising mixing the composite material with an organic diluent and removing enough organic diluent from the mixture to form a mixture with a substantially putty-like consistency, as well as a concomitant method of recovering the metastable intermolecular composite material.
    Type: Grant
    Filed: July 26, 2006
    Date of Patent: April 26, 2011
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: James R. Busse, Robert C. Dye, Timothy J. Foley, Kelvin T. Higa, Betty S. Jorgensen, Victor E. Sanders, Steven F. Son
  • Patent number: 7931763
    Abstract: Adding nanoparticles as a catalyst to solid propellant fuel to increase and enhance burn rates of the fuel by up to 10 times or more and/or modifying the pressure index. A preferred embodiment uses TiO2 nanoparticles mixed with a solid propellant fuel, where the nanoparticles are approximately 2% or less of total propellant mixture. The high surface to volume ratio of the nanoparticles improve the performance of the solid propellant fuel.
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: April 26, 2011
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Eric Petersen, Jennifer Small, Metthew Stephens, Jason Arvanetes, Sudipta Seal, Sameer Deshpande
  • Patent number: 7921777
    Abstract: The present invention relates to a method and an arrangement for the production of radially perforated, cylindrical propellant tubes (1, 23, 31). The invention is based on the underlying idea that the respective propellant tube (1, 23, 31) must be fixed and centred between its own open ends and thereafter to be perforated in stages in a large number of consecutive perforation operations by means of one or more pins (13) capable of displacement in a pin die (10) relative to the propellant tube towards and at least through the major proportion of the cylindrical wall of the propellant tube. Also included in the invention is the requirement for the displacement, between each perforation operation, of the propellant tube and the pin die (10) used for the preparation operation in such a way relative to one another that the propellant tube, after a complete perforation operation, shall be covered in its entirely by perforations (32, 33, 35, 36), which lie at a predetermined e-dimension distance from one another.
    Type: Grant
    Filed: December 8, 2004
    Date of Patent: April 12, 2011
    Assignee: Eurenco Bofors AB
    Inventor: Johan Dahlberg
  • Publication number: 20110073224
    Abstract: A composite solid rocket propellant comprising a fuel, an oxidizer and a dicyclopentadiene binder is provided. The dicyclopentadiene binder may be mixed with the fuel and oxidizer as a monomer and then polymerized after mixing to form the composite solid propellant. The composite solid propellant may also comprise plasticizers, triphenylphosphine, lecithin or combinations thereof. Methods for making the composite solid rocket propellant of the present invention are also provided.
    Type: Application
    Filed: April 7, 2008
    Publication date: March 31, 2011
    Inventors: Stephen D. Heister, Benjamin L. Austin, JR., Jeremy Corpening
  • Patent number: 7896989
    Abstract: Methods of making cross sectional, functionally-graded munitions propellants exhibiting various distributions of particle concentrations and burn rate, including having a fast burning core and slower burning outer layer(s). Unlike prior art methods of preparing such munitions, propellants prepared according to our inventive method(s) may be performed substantially as a single extrusion step or as a few processing steps, without requiring the time, expense and/or difficulties that characterized familiar, laminating methods and methods which use multiple extruders. Our inventive method advantageously employs a demixing phenomenon that, prior to our inventive application and teaching, has been considered quite undesirable in the preparation of propellants where uniformity and well-mixedness have been propellant attributes widely sought after.
    Type: Grant
    Filed: February 11, 2005
    Date of Patent: March 1, 2011
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: David Fair, Dilhan M. Kalyon, Sam Moy, Leon R. Manole
  • Patent number: 7896990
    Abstract: Nanotubular structures of high energy materials are used in high energy compositions, such as propellants.
    Type: Grant
    Filed: November 2, 2005
    Date of Patent: March 1, 2011
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: James J. Baker, John R. Luense, Randall J. Cramer
  • Publication number: 20110041969
    Abstract: The present invention provides pyrotechnic gas generator compounds and a method of obtaining them. Said compounds have a composition which comprises: an oxidizing charge which comprises at least one inorganic perchlorate and which does not comprise a chlorine scavenger; and a crosslinked, oxygen-containing hydrocarbon binder obtained by crosslinking an elastomer in the presence of at least one crosslinking agent and at least one oxygen-containing plasticizer for said elastomer; said elastomer having a molecular weight of more than 200 000 and being preferably selected from polyesters and polyacrylates; said at least one oxygen-containing plasticizer being composed of a plasticizer of which the molecular weight is greater than 350 g/mol and the oxygen balance equal to or greater than ?230 %, of a mixture of such plasticizers with one another or of a mixture of at least one such plasticizer with at least one other oxygen-containing plasticizer. Said compounds can be obtained continuously by extrusion.
    Type: Application
    Filed: April 30, 2008
    Publication date: February 24, 2011
    Applicant: SNPE MATERIAUX ENERGETIQUES
    Inventors: Frederic Marlin, Bernard Thibieroz
  • Patent number: 7887651
    Abstract: The present invention relates to a semi-continuous method for obtaining a composite explosive charge comprising a solid polyurethane matrix loaded with a charge, the charge being in powder form and comprising at least one nitro-organic explosive.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: February 15, 2011
    Assignee: Eurenco
    Inventor: Bernard Mahe
  • Publication number: 20110030859
    Abstract: A new process for forming MICs as well as three exemplary categories of MIC formulations is disclosed. MICs disclosed herein include a first exemplary category for which combustion can be initiated and sustained by either a heat (flame) source or electrical power, a second exemplary category of formulations that can be ignited and that sustain combustion at low pressures only with electrical power and a third exemplary category of formulations that can be ignited and extinguished at low pressures only with electrical power. The new process of MIC formulation provides energetic liquid oxidizers in place of traditional solvents, thus eliminating the need for solvent extraction. The energetic liquid oxidizer serves as a medium in which to suspend and grow the 3D nanostructure formed by the cross linked polymer (PVA). As a consequence, the 3D nanostructure entraps the liquid oxidizer, preventing it from evaporating and thereby eliminating the need for solvent extraction, preserves the 3D nanostructure shape.
    Type: Application
    Filed: May 15, 2009
    Publication date: February 10, 2011
    Inventor: Wayne N. Sawka
  • Publication number: 20110024007
    Abstract: The present invention is directed to an explosive composition comprised of heavy ANFO and expanded polymeric beads that have a density that is less than the density of the heavy ANFO. The expanded polymeric beads have a size that is determined or based on the size of ammonium nitrate prills used in the heavy ANFO portion of the composition. In one embodiment, the expanded polymeric beads that are utilized in the composition are at least 70% of the lower limit of the mesh size of the predominant ammonium nitrate prill mesh size. In another embodiment, the expanded polymeric beads are at least 70% of the a size that is related to the average mesh size of the ammonium nitrate prills.
    Type: Application
    Filed: October 10, 2010
    Publication date: February 3, 2011
    Inventor: Kevin H. Waldock
  • Publication number: 20110000390
    Abstract: A percussion primer composition including at least one explosive, at least one nano-size non-coated fuel particle having natural surface oxides thereon, at least one oxidizer, optionally at least one sensitizer, optionally at least one buffer, and to methods of preparing the same.
    Type: Application
    Filed: February 9, 2007
    Publication date: January 6, 2011
    Applicant: Alliant Techsystems Inc.
    Inventors: Jack Erickson, Joel Sandstrom, Gene Johnston, Neal Norris, Patrick Braun, Reed Blau, Lisa Spendlove Liu
  • Patent number: 7854811
    Abstract: A solvent-free process is used to make mouldable plastic explosives or mouldable plastic explosive simulant products.
    Type: Grant
    Filed: July 11, 2009
    Date of Patent: December 21, 2010
    Assignee: Kemzecur, Inc.
    Inventors: Albert Wartman, Bruce Barak Koffler
  • Patent number: 7842144
    Abstract: The invention relates to a novel process for the production of casting powder with high ntirocellulose content, and casting multiple-base rocket propellant including nitroglycerin formulated from such casting powder.
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: November 30, 2010
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Stephen N. Stiles, John Luense
  • Publication number: 20100294113
    Abstract: A method to charge a container with an energetic mix is disclosed. This method includes the following steps: (a) adding a plurality of particulate energetic mix constituents and a binder to the container; and (b) mixing the plurality of energetic mix constituents utilizing a non-contact mixer to form a homogeneous mixture within the container, and curing the binder to solidify the homogeneous mixture and bind the homogeneous mixture to the container. The container may be a liner or pre-form intended for insertion into a device, or may form a portion of the device itself, such as an aft portion of a rocket motor or casing for an explosive device. Because the resonant mixer does not have a moving impeller or other component that contacts the energetic mix and the container is not reused, there is minimal decontamination required between each mix and the manufacturer may rapidly commence assembling the next device, rather than clean-up and recertification.
    Type: Application
    Filed: October 15, 2008
    Publication date: November 25, 2010
    Inventor: Michael D. McPherson
  • Patent number: 7833366
    Abstract: The present invention relates generally to methods of making carbon nanotubes, and more particularly to the interaction of single wall carbon nanotubes with hydrazoic acid to introduce energetic azide groups into the nanotubes to form activated carbon nanotubes.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: November 16, 2010
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Farhad Forohar, Magdy Bichay
  • Patent number: 7824511
    Abstract: A method for making high energy compositions, such as propellants, explosives, pyrotechnics or the like, including a solid metal particulate fuel dispersed in a cured binder matrix. The compositions are formed with ingredients including a particulate metal fuel such as boron, binder polymer (such as GAP polyol), binder plasticizer, and a curing agent containing isocyanate. The improved method includes pre-reacting the particulate metal fuel with an amount of isocyanate, which acts as a curative to neutralize residual acid. The particulate metal fuel/isocyanate from the pre-curing step is mixed together with the binder polymer, binder plasticizer, and remaining curing agent to form the solid propellant. The initial neutralization of the metal fuel avoids gassing and improves the mechanical properties of the propellant yield.
    Type: Grant
    Filed: July 3, 2007
    Date of Patent: November 2, 2010
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: James J. Baker, Tina Woodland
  • Publication number: 20100269964
    Abstract: An explosive device and methods for forming same, the device comprising a portion of nitrous oxide and a portion of fuel. In one example, the explosive device may include a first storage area containing said portion of nitrous oxide, and a second storage area containing said portion of fuel, wherein the first storage area selectively maintains the portion of nitrous oxide separated from the fuel in the second storage area prior to detonation of the explosive device. In another example, in the event the explosive fails to detonate, the explosive device may include a vent valve for discharging the nitrous oxide from the explosive device to reduce or eliminate its explosive characteristics. The explosive device can be used for various applications, including but not limited to military weapons, pyrotechnic devices, or civil blasting explosives, for example.
    Type: Application
    Filed: March 9, 2007
    Publication date: October 28, 2010
    Applicant: PIONEER ASTRONAUTICS
    Inventor: Robert M. Zubrin
  • Publication number: 20100269965
    Abstract: The present invention generally relates to gas generant compositions for inflators of occupant restraint systems, for example. An extrudable pyrotechnic composition includes polyvinylazoles for use within an airbag gas generator. The fuel may be selected from exemplary polyvinylazoles including 5-amino-1-vinyltetrazole, poly(5-vinyltetrazole), poly(2-methyl-5-vinyl) tetrazole, poly(1-vinyl) tetrazole, poly(3-vinyl) 1,2,5 oxadiazole, and poly(3-vinyl) 1,2,4-triazole. An oxidizer is combined with the fuel and preferably contains phase stabilized ammonium nitrate. A novel method of forming the compositions is also presented wherein the various constituents are wetted and/or dissolved, and then cured within the polyvinylazole matrix thereby forming a more intimate combination within the gas generant composition. A vehicle occupant protection system 180, and other gas generating systems, incorporate the compositions of the present invention.
    Type: Application
    Filed: June 22, 2010
    Publication date: October 28, 2010
    Inventors: Graylon K. Williams, Robert J. Matlock
  • Patent number: 7807000
    Abstract: A thermobaric explosive composition is provided that includes coated fuel particle, a nitramine, and binder. The coated fuel particles preferably have a magnesium core and an aluminum coating. Upon detonation, the nitramine disperses the coated fuel particles over a blast area during a first overpressure stage. The aluminum coating of the fuel particles has a thickness selected to provide an amount of aluminum that is stoichiometrically less than an amount of ambient-air oxygen available in the blast area for aerobic combustion with the aluminum during the first overpressure stage. Once exposed, the magnesium cores may combust to increase the impulse generated in the first overpressure stage. Also provided are articles of manufacture and related methods.
    Type: Grant
    Filed: October 25, 2004
    Date of Patent: October 5, 2010
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: James J. Baker
  • Patent number: 7806999
    Abstract: This invention relates to granules comprising a homogenous mixture of metal flakes and/or metal powder and metal oxide powder, and a binder. The invention also relates to a process for producing such granules. The process includes the step of forming a mixture of metal flakes and/or metal powder and metal oxide powder, forming the mixture into a homogenous blend, adding the blend, together with a binder, to a granulator to form granules, and drying the granules. Granules so formed containing aluminum, aluminum oxide and iron oxide find particular use as sensitizers and energizers in explosives compositions.
    Type: Grant
    Filed: October 15, 2001
    Date of Patent: October 5, 2010
    Inventor: Dennis Gordon Verity