Abstract: The present invention relates to solid compounds which generate hydrogen by combustion, and to a method for generating hydrogen based on the combustion of said compounds. Said compounds have a composition which includes at least one inorganic borohydride, selected from alkali borohydrides, alkaline-earth borohydrides and mixtures thereof, and at least one inorganic oxidant. Characteristically, said composition comprises sulfur. Said method is advantageously implemented for supplying hydrogen to a fuel cell.
Abstract: An electrically primable igniter charge yield has a composition that yields a reduced proportion of toxic vapors after the deflagration. The composition of the charges contains, as the oxidizing agent, zinc peroxide and, as a component providing additional energy, initiating explosives of the kind which do not trigger a detonation in direct contact with press-molded elements of nitrocellulose propellant charge powders. Among these initiating exposives are the potassium salts of trinitrophenol or trinitroresorcinol. The components of the igniter charges are mixed with fibers of an electrically conductive material. Suitable conductive materials are carbon or metals, such as iron or copper, or metal alloys, such as brass, for example. The igniter charges furthermore contain a binder which is preferably a secondary explosive, such as, for example, nitrocellulose.
Type:
Grant
Filed:
March 11, 1988
Date of Patent:
September 11, 1990
Assignee:
Dynamit Nobel Aktiengesellschaft
Inventors:
Rainer Hagel, Klaus Redecker, Horst Penner
Abstract: A method of safely detoxifying mustard gases comprises reacting the gases a first reaction with incandescent pyrophoric metallic powder compounded in specific formulation. A second reaction enhances the neutralization of the toxicity of the mustard gases by thermal pyrolysis or deflagration. To accomplish the basic reaction which results in formation of thiacyclopentane, aluminum powder which is a preferred incandescent, pyrophoric metallic powder, is compounded in a basic formulation of aluminum powder, a binder, a curing agent, oxidizing agent, and burn rate catalyst. Examples of detoxification formulation which accomplishes the first reaction as well as a second reaction which enhances the neutralization of the toxicity of the mustard gases or toxic chemical agents by thermal pyrolysis or deflagration are shown under Table II and Table III.
Type:
Grant
Filed:
March 5, 1990
Date of Patent:
August 21, 1990
Assignee:
The United States of America as represented by the Secretary of the Army
Abstract: Detonators, such as electrical, mechanical and flame-sensitive detonators, and the production thereof, for utilization at low and high temperatures through the use of explosives with high temperature-resistant, thermoplastic materials as binder mediums. The explosive is present as a ruboff-resistant shaped member in cylindrical form or within a cup, while the primary igniting medium in the detonator housing is compressed alone or through the shaped member.
Abstract: An extrudable ammunition priming mix with viscosity characteristics which remain relatively stable over an extended time span. The stabilized viscosity is obtained by incorporating an effective amount of guar gum into the priming mix. The primer thus displays improved pot life so that larger batches may be made and used over an extended period of time.
Abstract: Ammunition rim fire priming mixtures are commonly prepared by mixing normal lead styphnate, a sensitizer, such as tetracene, an oxygen donor such as lead nitrate, and a frictionator such as ground glass. This invention relates to such a mixture and to center fire priming mixtures which consist of lead styphnate, tetracene, inorganic fuels and barium nitrate and to a method of forming them and is characterized by the use of lead styphnate which is formed in situ by the reaction of a water wet mixture of styphnic acid and a lead compound such as lead oxide (litharge), lead hydroxide, basic lead carbonate, or lead carbonate. Important advantages of this invention are reduced cost, improved safety since it is unnecessary to prepare, precipitate, or separately handle pure or relatively pure lead styphnate and improved percussion sensitivity of the resulting mixtures.