Abstract: A gas generating composition which is excellent in a combustion efficiency and a gas output and in which amounts of residues generated are reduced in the combustion is obtained.
Abstract: Propellant formulations are provided which include non-toxic burn rate modifiers. In order to produce a usable propellant formulation, it is necessary to control the burn rate of the propellant. Failure to adequately control the propellant burn rate often results in unacceptable performance of the propellant. It has been found that carbon fibers are capable of modifying the burn rate of propellants without resorting to lead as a burn rate additive. Accordingly, the use of from about 0.5% to about 6.0% carbon fibers is taught as effective burn rate modifiers in propellants, in order provide non-toxic means for modifying the propellant burn rate.
Abstract: The invention relates to a cast explosive composition having a relatively high density and energy and a critical diameter no larger than about 150 mm at a temperature of 5.degree. C. The composition comprises inorganic oxidizer salt consisting primarily of ammonium nitrate, a water-immiscible organic liquid fuel, less than about 5% water, a sensitizer and an emulsifier which allows formation of a water-in-oil emulsion at an elevated formulation temperature but which also allows the emulsion to weaken and the inorganic oxidizer salt to crystallize at lower or ambient temperatures to produce a cast composition.
Abstract: A high density emulsion blasting agent and method is provided for increasing volume energy and optimizing booster sensitivity of water-in-oil emulsion blasting agents without loss of desirable handling characteristics of invert emulsions by utilizing an effective amount of a special sensitizing formulation in total or partial substitution for gas entraining density control agents.
Abstract: An explosive is produced in a continuous process made up of three stages. The first stage is mixing the solid ingredients of the explosive and transporting it to a mixing station. The second stage is emulsifying nitroglycerine and transporting it to the mixing station where the nitroglycerine is separated from the water and combined with other liquid ingredients. The third stage is the mixing stage where the solid and liquid ingredients are mixed or kneaded and formed into suitably-sized explosive units. The mixing station is provided with a mixer having a pair of hoppers in which are deposited the liquid ingredients and the solid ingredients, and which empty into a housing having a pair of rotating mixing screws which mix the liquid and solid ingredients. The liquid ingredients never contact the bearings of the mixing screws. The ratio of liquid to solid ingredients of the explosive may be varied by varying the feeding rate of each.