Abstract: A wheel assembly to be coupled to a hub of a vehicle may include an inner rim to be coupled to the hub of the vehicle and an outer rim surrounding the hub. The wheel assembly may also include gas springs operatively coupled between the inner rim and the outer rim. At least one gas spring may have a controllable operating response.
Abstract: A rim assembly for a non-pneumatic tire has at least two rim components including: a first rim component having a first rim flange and a first lip, and a second rim component having a second rim flange and a second lip. The rim assembly further includes a plurality of lateral rim component support structures configured to extend through a plurality of openings of a tire support structure. The rim assembly also includes a first plurality of fasteners securing the plurality of lateral rim component support structures to the first rim flange, and a second plurality of fasteners securing the plurality of lateral rim component support structures to the second rim flange.
Abstract: The invention discloses a non-pneumatic tire, comprising a wheel hub; an annular belt located on the periphery of the wheel hub; spokes comprising a plurality of spokes circumferentially arranged between the annular belt and the wheel hub; each spoke being V-shaped, and the spoke comprising two inclined plates arranged at an angle and an arc-shaped apex corner area formed at the joint of the two inclined plates; a resistance part for limiting the deformation amount of the apex corner area to a deformation amount corresponding to the yield strength. According to the invention, plastic permanent deformation of spokes can be effectively avoided by adding resistance parts, and further the service life of non-pneumatic tires can be prolonged.
Abstract: A wheel assembly includes a circular frame arranged about a hub of a hub assembly, and shock absorbers coupling the hub assembly to the circular frame for providing relative motion between the circular frame and the hub assembly. Each of the shock absorbers extends along a tangent line to a circle that is coaxial with respect to the circular frame and the hub for providing tangential shock absorption along each tangent line.
Abstract: Taught is an apparatus for converting energy in a wheeled vehicle, comprising a wheel rim; a tire; and a plurality of hydraulic plunger cylinders alternatively distributed on periphery of the wheel rim.
Abstract: A non-pneumatic tire and wheel system comprises a tire having an exterior tread surface with a tread pattern and an interior surface. A wheel has a hub and a rim assembly. A plurality of radially oriented shock absorbing spokes each have radially interior and radially exterior ends for coupling the hub and rim assembly. Apertures through the hub allow pivotably coupling the hub to a spoke at the radially interior end of the spoke. Apertures through the rim assembly allow pivotably coupling the rim assembly to a spoke at the radially exterior end of the spoke. Each shock absorbing spoke has a central cylindrical tube with interior and exterior caps. Each spoke has an interior piston and rod and a pin. The pin pivotably couples the spoke to the hub. Each spoke has an exterior piston and rod and a pin. The pin pivotably couples the spoke to the rim assembly.
Abstract: A rubber composition for the tread of tire having reduced rolling resistance and increased wet skid resistance with the mechanical properties unimpaired, said rubber composition comprising 20 to 80% by weight of (I) essentially amorphous polybutadiene having a 1,2-bond units content of at least 70% and a Mooney viscosity (ML.sub.1+4, 100.degree. C.) of 10 to 100; 10 to 75% by weight of (II) polybutadiene rubber having a 1,2-bond units content of 20% or less and a Mooney viscosity (ML.sub.1+4, 100.degree. C.) of 20 to 130; and 3 to 35% by weight of (III) at least one rubber selected from styrene/butadiene copolymer rubber having a bound styrene content of 15 to 25% by weight, natural rubber, and polyisoprene rubber having a cis-1,4-bond units content of at least 90%.