Regenerative Patents (Class 159/24.1)
  • Patent number: 6906234
    Abstract: A continuous method and a heat pump device for enrichment of low-concentrated reaction mixtures resulting from the production of cycloalkanedienes by means of catalytic metathesis of cyclic aliphatic alkenes and cyclooligomers in organic reaction media with reduced energy consumption. Using the heat pump principle, liquid reaction mixtures with a content of at least 0.1 w/w % are enriched in an organic reaction medium to 30 to 50 w/w %. The organic reaction medium at temperature T1 is evaporated in an evaporator, the vapor is withdrawn and compressed to temperature T2 in a compressor, at a pressure difference of 0.25 to 1 bar. Compressed vapor of the reaction medium transfers heat energy obtained from electric energy in the heat exchanger of the evaporator to the organic reaction medium at temperature T1, and the temperature difference (T2?T1) does not exceed 12 K.
    Type: Grant
    Filed: July 30, 1999
    Date of Patent: June 14, 2005
    Assignee: Symrise GmbH & Co. KG
    Inventors: Jürgen Braband, Peter Müller, Rüdiger Bernhardt, Andreas Otto
  • Patent number: 6846387
    Abstract: An evaporator and condenser unit for use in distilling a liquid, such as water, includes a rotary heat exchanger plate having a plurality of accordion-style folds, and having its two ends joined together so as to give the folded plate a generally circular form. The adjacent panels of the folded plate define spaces between their oppositely facing surfaces, and these spaces are alternatingly configured as evaporating and condensing chambers. The evaporating chambers have their inner edges sealed by corresponding folds, while the condensing chambers have their outer edges sealed by corresponding folds. The folded plate is disposed between first and second end plates, and is mounted for rotation about its axis in a housing having a sump containing the liquid to be distilled. Liquid is supplied to the evaporating chambers and compressed vapor is supplied to the condensing chambers. Condensate is removed from the condensing chambers.
    Type: Grant
    Filed: July 5, 2000
    Date of Patent: January 25, 2005
    Assignee: Ovation Products Corporation
    Inventor: William H. Zebuhr
  • Patent number: 6846390
    Abstract: Methods for using a hydrophobic liquid, such as mineral oil, to compress steam include using a compressor to compress a mixture of steam and the hydrophobic liquid. One embodiment includes the steam to be compressed coming from a boiling aqueous solution in an evaporator. The steam compressed with a hydrophobic liquid is routed to a heat exchanger which thermally communicates with the evaporator to create more steam. The resulting mixture of condensed steam and hydrophobic liquid from the heat exchanger is routed to a water/hydrophobic liquid separator. The hydrophobic liquid is also recycled to the compressor from the water/hydrophobic liquid separator.
    Type: Grant
    Filed: September 9, 2002
    Date of Patent: January 25, 2005
    Inventor: David Bruce Bishkin
  • Patent number: 6802941
    Abstract: A distillation unit (10) employs a rotary heat exchanger (32) forming a multiplicity of evaporation chambers (56) into which a liquid to be purified is sprayed for evaporation. Spray arms (58) spray at a steady rate into all of the evaporation chambers (56) simultaneously but not at a rate that is adequate to maintain the wetting required for efficient transfer of heat to the liquid. A scanning sprayer (140) supplements this steady spray with spray from nozzles (142 and 144) into only a few of the evaporation chambers at a time, visiting all of them cyclically. The overall rate of spray from the two sources thus combined to spray the chamber cyclically maintains proper wetting even though on average it is lower than the rate that would be required of a constant-rate spray into all of the evaporation chambers.
    Type: Grant
    Filed: January 18, 2001
    Date of Patent: October 12, 2004
    Assignee: Ovation Products Corporation
    Inventor: William H. Zebuhr
  • Patent number: 6733636
    Abstract: A method of treating produced water from heavy oil production to provide feedwater for the production of high quality steam. A produced water from heavy oil recovery operations is initially treated by first removing oil and grease to a desired level, preferably to about twenty parts per million, or less. The pH is then adjusted, normally downward and by acid addition, to release at least some carbonate alkalinity as free carbon dioxide. Preferably, all non-hydroxide alkalinity is removed, or substantially so, by introducing the feedwater into a decarbonator. In some cases, the pH may be raised (without, or subsequent to decarbonation, depending upon water chemistry) preferably by caustic addition, to maintain silica solubility in the feedwater.
    Type: Grant
    Filed: May 8, 2000
    Date of Patent: May 11, 2004
    Assignee: Ionics, Inc.
    Inventor: William F. Heins
  • Patent number: 6695951
    Abstract: The present water reclamation system includes a series of concentric thin shells. The shells mount within a housing that can be maintained under vacuum or low pressure. The shells rotate at high velocity. Contaminated liquid from outside the housing is injected into the space between half the shells. The centrifugal force causes the liquid to form a thin film along the inward facing surface of the shell. A compressor lowers the pressure adjacent the thin film causing the liquid to boil. The compressor carries the vapor to the other side of those shells at a slightly higher temperature. There the vapor encounters the wall, which is cooler because its heat was transferred to boil the contaminated liquid. The vapor condenses, and rotation throws the condensate against the adjacent wall where it is collected. When condensing, the heat of condensation transfers to the shell for boiling the incoming contaminated liquid.
    Type: Grant
    Filed: July 18, 2000
    Date of Patent: February 24, 2004
    Inventors: Jack G. Bitterly, Steven E. Bitterly
  • Patent number: 6689251
    Abstract: A distiller (10) that employs a rotary heat exchanger (32) introduces water to be evaporated into evaporation chambers (56). During most of its operation, it collects the water that has passed through the evaporation chamber (56) without evaporating, and it reintroduces the thus-collected liquid back into the evaporation chamber, where it also adds a minor amount of unrecirculated feed liquid to make up for evaporation and concentrate removal. Simultaneously, a minor amount of feed liquid is fed into one side of a transfer pump (116). During this mode of operation, the impurities concentration in the recirculating liquid tends to increase as a result of the evaporation of pure water vapor. Periodically, the erstwhile recirculating liquid is redirected to the other side of the transfer pump (116), where it causes the feed liquid stored in the transfer pump's first side to be fed without accompanying recirculant liquid into the rotary heat exchanger's evaporation chambers.
    Type: Grant
    Filed: January 18, 2001
    Date of Patent: February 10, 2004
    Assignee: Ovation Products Corporation
    Inventor: William H. Zebuhr
  • Publication number: 20030132097
    Abstract: A desalination device includes a saltwater input line and a desalinator having a water input connected to the input line, a fresh water output and a brine output. A fuel cell generates electricity and is connected to an energy source for the desalinator. A heat exchanger transfers waste heat from the fuel cell to desalinator.
    Type: Application
    Filed: January 15, 2002
    Publication date: July 17, 2003
    Inventors: Brian Kenet, Pedro Joaquin Sanchez Belmar
  • Publication number: 20030132095
    Abstract: A method for distilling water includes the steps of entering brine to be distilled into a sub-atmospheric boiler having a brine section with a brine output and a water vapor output; concentrating brine in the brine section to a concentration of at least 250 grams of salt or contaminants per liter; stirring the brine in the brine section; and exiting the brine through the brine output. A distiller with a subatmospheric boiler having a stirring device is also provided.
    Type: Application
    Filed: January 15, 2002
    Publication date: July 17, 2003
    Inventors: Brian Kenet, Pedro Joaquin Sanchez Belmar
  • Publication number: 20030132096
    Abstract: An evaporator and condenser unit for use in distilling a liquid, such as water, includes a rotary heat exchanger plate having a plurality of folds or pleats. Adjacent panels of the folded plate define spaces between their oppositely facing surfaces, and these spaces are alternatingly configured as evaporating and condensing chambers. The evaporating chambers, moreover, are defined between adjacent panels that are joined at an outer diameter fold, while the condensing chambers are defined between adjacent panels that are joined at an inner diameter fold. The evaporating chambers are thus closed at their outer diameter ends and open at their inner diameter ends, while the condensing chambers are closed at their inner diameter ends and open at their outer diameter ends.
    Type: Application
    Filed: January 17, 2002
    Publication date: July 17, 2003
    Inventor: William H. Zebuhr
  • Patent number: 6551466
    Abstract: A method and apparatus for removing a contaminant from a fluid feed stream containing the contaminant. The method includes the steps of providing a feed stream and heating it in a first step to at least partially remove some of the contaminants and recover energy from a concentrate and distillate generated. Further heating the feed stream in a second heating step in a heated separator generates a saturated vapor fraction and a concentrated liquid contaminant fraction. The vapor fraction may be compressed to generate a temperature differential in the reboiler exchanger with the vapor fraction being passed into contact with a reboiler exchanger to provide a stream of condensed vapor from the reboiler. The stream may be circulated through the reboiler exchanger and the heated separator to maintain from about 1% to about 50% by mass vapor in the stream.
    Type: Grant
    Filed: December 22, 1999
    Date of Patent: April 22, 2003
    Assignee: Aqua Pure Ventures Inc.
    Inventors: Steve Kresnyak, Edward Warchol, Robert Becker
  • Patent number: 6436242
    Abstract: A water distiller has a sub-atmospheric boiler having a non-recirculating brine section, an input, a brine output and a vapor output. The input is for water to be distilled, the brine output for brine, and the vapor output for water vapor. A compressor is connected to the vapor output for heating the water vapor, and an heated vapor line is connected to an output of the compressor, the heated vapor line heating the brine section.
    Type: Grant
    Filed: February 10, 2000
    Date of Patent: August 20, 2002
    Inventor: Pedro Joaquin Sanchez Belmar
  • Publication number: 20020092759
    Abstract: A distillation unit (10) employs a rotary heat exchanger (32) forming a multiplicity of evaporation chambers (56) into which a liquid to be purified is sprayed for evaporation. Spray arms (58) spray at a steady rate into all of the evaporation chambers (56) simultaneously but not at a rate that is adequate to maintain the wetting required for efficient transfer of heat to the liquid. A scanning sprayer (140) supplements this steady spray with spray from nozzles (142 and 144) into only a few of the evaporation chambers at a time, visiting all of them cyclically. The overall rate of spray from the two sources thus combined to spray the chamber cyclically maintains proper wetting even though on average it is lower than the rate that would be required of a constant-rate spray into all of the evaporation chambers.
    Type: Application
    Filed: January 18, 2001
    Publication date: July 18, 2002
    Inventor: William H. Zebuhr
  • Publication number: 20020092758
    Abstract: A distillation unit (10) employs counterflow-heat-exchanger modules (102, 104, 106, 108, and 110) to use the heat from water that has come from a rotary heat exchanger (32) to heat feed water that is being sent to it for distillation. In one of the modules the feed water is heated only by concentrate that results from the distillation process, whereas only condensate heats the feed water in the other modules. By thus employing four different flows in two sets of heat-exchanger modules rather than three flows in a single set, the distillation unit can employ relatively simple counterflow-heat-exchanger modules and easily adjust flows to achieve a desired output concentration in response to different expected feed concentrations while maintaining optimum feed flows.
    Type: Application
    Filed: January 18, 2001
    Publication date: July 18, 2002
    Inventor: William H. Zebuhr
  • Publication number: 20020092762
    Abstract: A distillation unit (10) includes a filter (116) through which feed water passes before it is introduced into a rotary heat exchanger (32) for evaporation and subsequent condensation. During a normal mode of operation, liquid that has not evaporated as a result of passage through the rotary heat exchanger's evaporation chambers (56) is recirculated for reintroduction into those chambers, together with a minor amount of feed liquid from the filter to make up for evaporation. At the same time, some filtered feed water is fed into one side of a transfer pump (166), where it slowly accumulates. Periodically, though, during short flushing-mode periods, the erstwhile recirculating liquid is redirected at a relatively high flow rate through the filter (116) in the reverse direction, thereby flushing it.
    Type: Application
    Filed: January 18, 2001
    Publication date: July 18, 2002
    Inventor: William H. Zebuhr
  • Publication number: 20020092624
    Abstract: In a distillation unit (10) a rotary heat exchanger (32) receives from a radially inward position feed liquid to be purified and collects on the inner surface of a rotating exterior shell (36) liquid that has passed through its evaporation chambers (56). Stationary scoop tubes (122 and 124) scoop liquid from the resultant liquid layer that forms on the shell (36)'s inner surface, and the kinetic energy of the liquid scooped from the thus-spinning layer drives it radially inward through the scoop tubes (122 and 124) into spray arms (58) for reintroduction into the rotary heat exchanger's evaporation chambers (56).
    Type: Application
    Filed: January 18, 2001
    Publication date: July 18, 2002
    Inventor: William H. Zebuhr
  • Patent number: 6375803
    Abstract: A method and apparatus for removing a contaminant from a fluid feed stream containing the contaminant. The method includes the steps of providing a feed stream (10) and heating it in a first step (18) to at least partially remove some of the contaminants and recover energy from a concentrate and distillate generated. Further heating the feed stream in a second heating step (20) in a heated separator generates a saturated vapor fraction (30) and a concentrated liquid contaminant fraction. The vapor fraction (30) may be compressed (32) to generate a temperature differential in the reboiler exchanger (34) with the vapor fraction being passed into contact with a reboiler exchanger (34) to provide a stream of condensed vapor from the reboiler. The stream may be circulated through the reboiler exchanger (34) and the heated separator to maintain from about 1% to about 50% by mass vapor in the stream.
    Type: Grant
    Filed: January 14, 2000
    Date of Patent: April 23, 2002
    Assignee: Aqua-Pure Ventures Inc.
    Inventors: Minoo Razzaghi, Robert Spiering
  • Patent number: 6365005
    Abstract: An improved design of a vapor compression distiller which makes use of a rapid, highly turbulent flow through the heat-of-evaporation recovery, or primary, heat exchanger. The distiller may also include the use of turbulators to increase turbulence and mixing within the primary heat exchanger. The increased level of turbulence and mixing dramatically reduces fouling inside the primary heat exchanger and increases the heat transfer efficiency. The improvements in the distiller are maximized by recirculating the liquid to be evaporated at a high multiple of the flow rate of the liquid feed to the distiller. The distiller may also include a feed circulation loop with a secondary heat exchanger to increase the efficiency of heat-of-evaporation recovery in the evaporation/condensation cycle. Applications of the vapor compression distiller include purification of waste liquids, concentration of dilute liquid mixtures, and separation of liquid/liquid, liquid/gas, and liquid/solid mixtures.
    Type: Grant
    Filed: February 9, 1999
    Date of Patent: April 2, 2002
    Inventor: James W. Schleiffarth
  • Patent number: 6355145
    Abstract: A method for removing a contaminant from a fluid feed stream containing the contaminant. The method includes the steps of providing a feed stream and heating it in a first step to at least partially remove some of the contaminants and recover energy from a concentrate and distillate generated. Further heating the feed stream in a second heating step in a heated separator generates a saturated vapor fraction and a concentrated liquid contaminant fraction. The vapor fraction may be compressed to generate a temperature differential in the reboiler exchanger with the vapor fraction being passed into contact with a reboiler exchanger to provide a stream of condensed vapor from the reboiler. The stream may be circulated through the reboiler exchanger and the heated separator to maintain from about 1% to about 50% by mass vapor in the stream. The apparatus includes a unique configuration of a vapor compressor, heated separator in combination with a forced circulation circuit to generate the decontamination result.
    Type: Grant
    Filed: January 14, 1998
    Date of Patent: March 12, 2002
    Assignee: Aqua-Pure Ventures, Inc.
    Inventors: Steve Kresnyak, Minoo Razzaghi, Robert Spiering
  • Patent number: 6217711
    Abstract: A method of treating cellulose pulp mill condensates having an MeOH content using an evaporator and a steam stripper having a reboiler, comprising: (a) Collecting a feed liquor stream having at least 50% of the pulp mill MeOH. (b) Feeding the feed liquor stream to the evaporator having at least two heating element sections separated on a motive steam side. (c) Evaporating the liquor in the evaporator to produce a vapor containing at least 40% of the at least 50% of the pulp mill MeOH. (d) Compressing the vapor from (c) to increase the vapor pressure. (e) Using the vapor from (d) as condensing heating media in (c) for the evaporation in a first heating element section of the evaporator and venting a portion of the vapor through the first heating element section. (f) Compressing the vented vapor from the heating elements of the evaporator from (e) to increase the vapor pressure to be used as heating media in the reboiler.
    Type: Grant
    Filed: February 10, 1999
    Date of Patent: April 17, 2001
    Assignee: Andritz-Ahlstrom Oy
    Inventors: Rolf Ryham, Jarmo Kaila, John Rauscher, Theodora Retsina, Jan Ohman