Abstract: One aspect relates to a process for the preparation of a quartz glass body. The process includes providing a silicon dioxide granulate, making a glass melt out of the silicon dioxide granulate, and making a quartz glass body out of at least a part of the glass melt. In one aspect, providing a silicon dioxide granulate includes providing of a silicon dioxide powder and processing of the powder to obtain a silicon dioxide granulate including the spray drying of a silicon dioxide slurry using a nozzle. The nozzle has a contact surface to the slurry made of glass, plastic or a combination thereof. Furthermore, one aspect relates to a quartz glass body obtainable by this process. Furthermore, one aspect relates to the preparation of a silicon dioxide granulate. One aspect also relates to a light guide, an illuminant, and a formed body, made from processing of the quartz glass body.
Type:
Grant
Filed:
December 16, 2016
Date of Patent:
July 6, 2021
Assignee:
Heraeus Quarzglas GmbH & Co. KG
Inventors:
Matthias Otter, Mirko Wittrin, Markus Wilde
Abstract: The invention proposes a method for the production of a porous powder product containing a microorganism, from a liquid concentrate comprising at least one liquid microorganism culture and a carrier composition, the carrier composition comprising at least one carbohydrate and at least one protein, the method comprising the steps of: i) preparing the liquid concentrate to have both a temperature of between and 40° C. and a viscosity greater than 150 mPa·s; ii) injecting a food grade gas into the prepared concentrate at a pressure greater than 0.3 MPa to intimately incorporate the gas into the liquid concentrate and form a stable foam with a density of between about 0.6 to about 1.2 kg/l; iii) conveying the foam to an atomizing device wherein the pressure of the foam is reduced from 0.3 MPa to atmospheric pressure to provide a partially dried product; and iv) exposing the partially dried product to a drying media to reduce both the moisture content to less than 5% moisture and the water activity to less than 0.
Abstract: Disclosed are a method of preparing acetylated cellulose ether, and acetylated cellulose ether prepared thereby. Here, the disclosed method of preparing the acetylated cellulose ether includes dissolving acetylated cellulose ether in an organic solvent to obtain a mixture comprising a solution of the acetylated cellulose ether; removing an insoluble component that is insoluble in the organic solvent from the mixture; and adding the mixture to water to precipitate the acetylated cellulose ether. The acetylated cellulose ether prepared thereby has a turbidity of less than 40 formazin turbidity units (FTU).
Abstract: A fractionation process for producing at least two concentration fractions of a fluid including a solute, suspended or dissolved content using at least two fluidly connected evaporator units is provided. The process includes the steps of: feeding a feed fluid including a solute, suspended or dissolved content into at least a first evaporator unit; evaporating a first amount of fluid from the feed fluid in at least the first evaporator unit to produce a first concentrated fluid; feeding at least a portion of the first concentrated fluid into at least a second evaporator unit; and evaporating a second amount of fluid from the first concentrated fluid in at least the second evaporator unit to produce a second concentrated fluid.
Abstract: A device for treating a liquid comprising a solvent and a solute, and separating the solvent and solute, the device comprising a continuous flow treatment chamber including: (a) one or more drying zones; (b) one or more return zones to circulate heating fluid continuously through drying zone(s) and return zone(s) sequentially; (c) a heating fluid inlet(s) in at least one of the return zones for the introduction of the heating fluid; (d) a circulating fan to circulate the heating fluid; (e) a liquid inlet(s) in the drying zone(s) including nozzles though which liquid to be treated is introduced in misted form into the zones; (f) a solute collector(s) located in the drying zone(s) downstream of the liquid inlet(s); wherein the introduced liquid is heated by the heating fluid and the solute is separated from the liquid in the solute collector(s).
Type:
Grant
Filed:
February 23, 2011
Date of Patent:
August 13, 2013
Assignee:
Aquamill Five Star Pty Ltd
Inventors:
Ronald Barry Zmood, Simon John Withington, Carl Nicholas Botcher