Abstract: Disclosed herein are a flexible substrate with surface structure and a method for manufacturing the flexible substrate. The disclosure relates to a low-cost process to manufacturing the flexible substrate that is adapted to the large-area mass production. According to one of the embodiments in the disclosure, the method introduces a mold with surface structure. An isolation material is formed on the mold surface in an earlier stage. Upon the isolation layer, a flexible substrate material is coated. After that, a baking step is employed to cure the flexible substrate material. The flexible substrate with surface structure is therefore formed after de-molding the cured substrate. Another aspect to the disclosure adopts the above-formed substrate to be a base substrate. A second flexible substrate with the surface structure identical to the mold is then formed by performing the above steps.
Abstract: A method for forming an electronic device provides a casting master having a casting surface, and deposits a substrate material onto the casting surface to form a flexible substrate sheet of predetermined thickness, wherein the flexible substrate sheet has a circuit-side surface that is formed against the casting surface. The flexible substrate sheet is released from the master and secured against a carrier, with the circuit-side surface facing outward. An electronic device is then formed on the circuit-side surface.
Type:
Grant
Filed:
February 8, 2008
Date of Patent:
June 29, 2010
Assignee:
Carestream Health, Inc.
Inventors:
Roger Stanley Kerr, Timothy John Tredwell, Yongtaek Hong
Abstract: A method for manufacturing a duplicating stamper is provided. The method includes the steps of forming a metal film on a stamper, the metal film having an apertural area in a central area of the stamper, lifting up an innermost circular edge of the metal film in order to detach the metal film from the innermost circular edge to the outermost circular edge, and detaching the metal film to provide another stamper. Alternatively, for detaching the metal film, a gas is blown into the apertural area with lifting up the innermost circular edge of the metal film.
Abstract: Disclosed is a method of manufacturing, by a continuous casting process, aluminum alloy strip for use in the production of supports for lithographic printing plates, comprising the step of passing an aluminum melt successively through a filtering means, a launder connected to the filtering means, a liquid level controlling means connected to the launder, and a melt feed nozzle connected to the liquid level controlling means, wherein the aluminum melt is obtained by melting an aluminum starting material, then adding to and melting in the molten aluminum starting material a titanium and boron-containing aluminum alloy, and the time t in seconds required for the aluminum melt to pass through the launder satisfies the following condition (1): t?270×1.2×D , ??(1) where D is the depth in meters of the melt in the launder. The method is able to prevent the formation of black streaks even when casting is carried out for an extended period of time.
Abstract: A method of manufacturing a stamper includes the steps of coating a flat surface of a substrate with photosensitive material; directing light to a specified position on the photosensitive material to expose it; developing the photosensitive material to make a minute photoresist pattern; etching the substrate to a specified depth with a mask of the photoresist pattern; removing the photoresist as the mask to make a glass master; arbitrarily forming a first nickel layer on a surface of the glass master; forming an intermediate layer of a metal having a smaller linear expansion coefficient than nickel over the first nickel layer; forming a second nickel layer on the intermediate layer to form a conductive film having a two- or three-stratum structure; arbitrarily subjecting the whole substrate to a process to make nickel passive; forming an electroformed layer on the conductive film by an electroforming process; and separating the conductive film from the glass master.
Abstract: The method of casting a representation of a photograph that includes forming an etched plate through a half-toned screen of the photograph, making a mold cavity of the plate, making a wax impression of the rubber mold with the wax impression not completely copying the rubber mold, forming a casting of the wax impression, coloring the surface of the casting and sanding and burnishing the surface to remove the coloring from the high areas to produce a cast surface having tonal and height contrasts.
Abstract: Cylinders for lithographic printing machines having hard, non-porous surfaces are made without plating by forming a thin stainless steel sheet into a cylindrical shape and disposing it against the wall of a cylindrical mould. Cast iron is poured into the mould at temperatures substantially in excess of normal casting temperatures to bond with the stainless steel sheet. The surface is then ground and polished. Preferably the stainless steel is initially provided with a thin plating of copper on its inner surface to enhance the bond.