Means To Directly Apply Electrical Or Wave Energy To Work Patents (Class 164/250.1)
  • Patent number: 11872633
    Abstract: A method of forming one of a plurality of encapsulated crystalline particles includes feeding a coaxial feed wire downwardly such that a first wire end of the coaxial feed wire is positioned at a heating source. The coaxial feed wire includes a crystalline wire core, and an amorphous shell surrounding the crystalline wire core. The first end of the coaxial feed wire is heated at the heating source, thereby forming a molten pendant drop at the first wire end. The plurality of encapsulated crystalline particles are emitted from the molten pendant drop onto a collector located below the molten pendant drop.
    Type: Grant
    Filed: May 16, 2022
    Date of Patent: January 16, 2024
    Assignee: WESTERN NEW ENGLAND UNIVERSITY
    Inventors: Jingzhou Zhao, Max Aaron Martel, Yuri Andrew Gulak
  • Patent number: 9944064
    Abstract: A method for forming an impeller housing for an appliance is provided. The method includes establishing three-dimensional information of the impeller housing, converting the three-dimensional information of the impeller housing into a plurality of slices, and successively forming each cross-sectional layer of the impeller housing with an additive process. The additive process may permit formation of various features of the impeller housing.
    Type: Grant
    Filed: October 13, 2014
    Date of Patent: April 17, 2018
    Assignee: Haier US Appliance Solutions, Inc.
    Inventor: James Quentin Pollett
  • Patent number: 9557192
    Abstract: A clockspring assembly is provided having means to indicate that the clockspring assembly is properly centered upon installation in a motor vehicle. The clockspring assembly includes a hub and a rotor that is rotatable relative to the hub. A ribbon cable is wound about the rotor and provided with one end attached to the rotor and another end attached to the hub. An electronic centering indicator is mounted to the hub and is configured to indicate a centered position of the hub relative to the rotor as a result of a condition occurring when the hub becomes centered with the rotor. Upon the occurrence of the condition, the centering indicator is configured to provide an electronic signal indicating that the clockspring is properly centered.
    Type: Grant
    Filed: January 14, 2016
    Date of Patent: January 31, 2017
    Assignee: ALPS ELECTRIC CO., LTD.
    Inventors: Donald J. Siler, Anthony Trask
  • Publication number: 20150144285
    Abstract: The invention relates to a diecasting die, in particular in a diecasting hot-runner system, wherein the diecasting die is provided in a feeding region for forming a plug of solidified molten material that interrupts a flow of the molten material and can be completely remelted. A diecasting die is provided according to the preamble of the invention that is suitable for different molten materials, in which a heating acts directly on the molten material with high power and largely without delay. Cooling is not required and the injection-moulding method can be carried out at a high operating machine speed and under feeding conditions that can be monitored and reproduced well. A feeding region is provided comprising direct resistance heating that produces a melting heat and is in direct thermal contact with the molten material.
    Type: Application
    Filed: November 15, 2014
    Publication date: May 28, 2015
    Inventor: Walter Müller
  • Publication number: 20140374048
    Abstract: Processes, systems, and apparatuses are disclosed for forming products from atomized metals and alloys. A stream of molten alloy and/or a series of droplets of molten alloy is atomized to produce particles of the molten alloy. The molten alloy particles are cooled to a temperature that is less than a solidus temperature of the molten alloy particles so that the molten alloy particles solidify. The solid alloy particles impact a collector and produce a solid alloy preform.
    Type: Application
    Filed: April 30, 2014
    Publication date: December 25, 2014
    Applicant: ATI PROPERTIES, INC.
    Inventors: Richard L. Kennedy, Robin M. Forbes Jones
  • Publication number: 20140352907
    Abstract: A die casting apparatus (100) for amorphous alloy comprises a stationary die (1) and a movable die (2); a sealed cabin (4) difining a sealing chamber (40); a protecting gas supplying device connected with the sealed cabin (4) for supplying the protecting gas into the sealing chamber (40); a melting device (5) for receiving and melting amorphous alloy; a feed sleeve (6) having a molten material inlet (60), with a plunger (7) positioned therein for injecting the molted amorphous alloy from the melting device (5) into a die chamber via the molten material inlet (60); a driving device (8) connected with the plunger (7) for driving the plunger (7) in the feed sleeve (6); and a gas purifying device (10) communicated with the sealed cabin (4) for purifying the gas from the sealed cabin (4).
    Type: Application
    Filed: December 13, 2012
    Publication date: December 4, 2014
    Inventor: Faliang Zhang
  • Patent number: 8748773
    Abstract: An apparatus for melting an electrically conductive metallic material comprises an auxiliary ion plasma electron emitter configured to produce a focused electron field including a cross-sectional profile having a first shape. The apparatus further comprises a steering system configured to direct the focused electron field to impinge the focused electron field on at least a portion of the electrically conductive metallic material to at least one of melt or heat any solidified portions of the electrically conductive metallic material, any solid condensate within the electrically conductive metallic material, and/or regions of a solidifying ingot.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: June 10, 2014
    Assignee: ATI Properties, Inc.
    Inventor: Robin M. Forbes Jones
  • Patent number: 8662142
    Abstract: A method and a device for remelting metal in an electric furnace includes forming a slag bath to form molten material electrodes. The molten metal of the material electrodes solidifies in block form in a crucible apparatus as a result of cooling in such a way that a block growth forms from a block base using a progressing solidification process, wherein the block base is heated by applying energy directly to the block base to influence the cooling process.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: March 4, 2014
    Assignee: Ald Vacuum Technologies GmbH
    Inventors: Ulrich Biebricher, Michael Protzmann, Gerhard Brückmann
  • Publication number: 20130327493
    Abstract: In production of a reactive metal using a melting furnace for producing metal having a hearth, ingots can be efficiently produced by efficiently cooling the ingots extracted from the mold provided in the melting furnace. In addition, an apparatus structure in which multiple ingots can be produced with high efficiency and high quality from one hearth, is provided. A melting furnace for producing metal is provided, the furnace has a hearth for having molten metal formed by melting raw material, a mold in which the molten metal is poured, an extracting jig which is provided below the mold for extracting ingot cooled and solidified downwardly, a cooling member for cooling the ingot extracted downwardly of the mold, and an outer case for keeping the hearth, the mold, the extracting jig, and the cooling member separated from the air, wherein at least one mold and extracting jig are provided in the outer case, and the cooling member is provided between the outer case and the ingot, or between the multiple ingots.
    Type: Application
    Filed: February 27, 2012
    Publication date: December 12, 2013
    Applicant: TOHO TITANIUM CO., LTD.
    Inventors: Takashi Oda, Hisamune Tanaka, Takeshi Shiraki, Norio Yamamoto
  • Publication number: 20130306198
    Abstract: Described herein is a method of selectively depositing molten bulk metallic glass (BMG). In one embodiment, a continuous stream or discrete droplets of molten BMG is deposited to selected positions. The deposition can be repeated as needed layer by layer. One or more layers of non-BMG can be used as needed.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 21, 2013
    Applicants: Crucible Intellectual Property LLC, Apple Inc.
    Inventors: Christopher D. Prest, Joseph C. Poole, Joseph Stevick, Theodore Andrew Waniuk
  • Publication number: 20130233507
    Abstract: The invention relates to a diecasting die (7) and a diecasting method for sprueless diecasting, in particular in a diecasting hot-runner system (1), wherein the diecasting die (7) is provided in a feeding region (8) for forming a plug of solidified molten material (22) that interrupts a flow of the molten material and can be completely remelted. The problem addressed by the present invention is therefore that of providing a diecasting die and a diecasting method according to the preamble of the invention that are suitable for different molten materials, in which a heating acts directly on the molten material with high power and largely without delay, a cooling is not required and the injection-moulding method can be carried out at a high operating machine speed and under feeding conditions that can be monitored and reproduced well. The problem is solved by the feeding region (8) comprising direct resistance heating that produces a melting heat and is in direct thermal contact with the molten material (22).
    Type: Application
    Filed: November 16, 2011
    Publication date: September 12, 2013
    Inventor: Walter Müller
  • Publication number: 20130199747
    Abstract: An assembly is disclosed for exothermic welding comprising a mold which is formed of a material which withstands exothermic welding temperatures and includes a weld cavity therein for positioning at least two members which are to be exothermically welded together, and an ignition cavity communicating with the weld cavity. The mold is capable of accommodating any one of several exothermic welding procedures which may involve either a flint igniter or the use of an electrical igniter which is readily accommodated by the mold in the performance of several of the procedures. The electrical igniter is formed of a pair of flat, longitudinally extending conductor strips with a sheet of insulation laminated therebetween, a filament adjacent one end of the strips, and one or more positioning tabs adjacent one end of the strips. A cartridge is also provided which contains the weld metal and the electrical igniter and which may be positioned in the ignition cavity of the mold.
    Type: Application
    Filed: March 15, 2013
    Publication date: August 8, 2013
    Applicant: HARGER, INC.
    Inventor: Harger, Inc.
  • Publication number: 20130025814
    Abstract: An apparatus and method of uniformly heating, rheologically softening, and thermoplastically forming magnetic metallic glasses rapidly into a net shape using a rapid capacitor discharge forming (RCDF) tool are provided. The RCDF method utilizes the discharge of electrical energy stored in a capacitor to uniformly and rapidly heat a sample or charge of metallic glass alloy to a predetermined “process temperature” between the glass transition temperature of the amorphous material and the equilibrium melting point of the alloy in a time scale of several milliseconds or less. Once the sample is uniformly heated such that the entire sample block has a sufficiently low process viscosity it may be shaped into high quality amorphous bulk articles via any number of techniques including, for example, injection molding, dynamic forging, stamp forging, sheet forming, and blow molding in a time frame of less than 1 second.
    Type: Application
    Filed: February 15, 2012
    Publication date: January 31, 2013
    Applicant: California Institute of Technology
    Inventors: Marios D. Demetriou, Joseph P. Schramm, Georg Kaltenboeck, William L. Johnson
  • Publication number: 20120279349
    Abstract: The present invention describes an inoculation process for inoculating a nucleating additive to a cast iron alloy in a pouring distributor by means of using a transferred arc plasma torch, with an anode partially immersed in the cast iron alloy and a cathode located on the surface of said alloy, the anode or the cathode or both comprising graphite, preferably synthetic crystalline graphite, which supplies said nucleating additive to the iron alloy. The invention thus describes an inoculation device useful for carrying out the inoculation process.
    Type: Application
    Filed: November 25, 2009
    Publication date: November 8, 2012
    Inventors: Luis Cobos Jimenez, Francisco Rodríguez Vázquez, Jose Luis Oncala Avilés, Pedro Carnicer Alfonso
  • Publication number: 20120255701
    Abstract: Certain embodiments of a melting and casting apparatus comprising includes a melting hearth; a refining hearth fluidly communicating with the melting hearth; a receiving receptacle fluidly communicating with the refining hearth, the receiving receptacle including a first outflow region defining a first molten material pathway, and a second outflow region defining a second molten material pathway; and at least one melting power source oriented to direct energy toward the receiving receptacle and regulate a direction of flow of molten material along the first molten material pathway and the second molten material pathway. Methods for casting a metallic material also are disclosed.
    Type: Application
    Filed: April 7, 2011
    Publication date: October 11, 2012
    Applicant: ATI Properties, Inc.
    Inventors: Travis R. Moxley, Lanh G. Dinh, Timothy F. Soran, Edmund J. Haas, Douglas P. Austin, Matthew J. Arnold, Eric R. Martin
  • Publication number: 20120138253
    Abstract: A method for producing ferro-chrome alloys comprising a stechiometric charge and stechiometric slag calculation step, a step of making the plant and the crucible furnace operate at normal regime, steps of casting the metal and the slag, a step of collecting the molten metal in suitable modular moulds made from spheroidal graphite cast iron, a step of removing the ingots contained in the moulds with suitable pincer means, a step of collecting the slag in suitable non-refractory bells or ladles, characterised in that the metal-slag separation takes place directly inside the furnace and in that said castings of metal and slag take place in successive steps so as to allow the drawing off of the liquids in the amounts formed between one casting and the next.
    Type: Application
    Filed: July 30, 2009
    Publication date: June 7, 2012
    Inventor: Paolo Appolonia
  • Publication number: 20120132385
    Abstract: The invention relates to a method and a device for remelting metal in an electric furnace, wherein material electrodes are melted on by forming a slag bath, and the melted-on metal of the material electrodes solidifies in block form in a crucible apparatus (10) as a result of cooling in such a way that a block growth forms from a block base by means of a progressing solidification process, wherein the block base is heated to influence the cooling process, wherein the block base is heated by applying energy directly to the block base.
    Type: Application
    Filed: June 11, 2010
    Publication date: May 31, 2012
    Inventors: Ulrich Biebricher, Michael Protzmann, Gerhard Bruckmann
  • Publication number: 20120090805
    Abstract: Systems, apparatus, methods, and articles of manufacture that provide for a thermistor furnace, such as for melting, casting, and/or smelting loads (e.g., precious metals, other metals such as titanium, and/or thermoset plastics), are provided. In some embodiments, the thermistor furnace may comprise a vacuum spin casting apparatus capable of utilizing various types and configurations of molds, such as graphite and/or plaster molds.
    Type: Application
    Filed: October 18, 2011
    Publication date: April 19, 2012
    Inventors: Stanislaw P. Uzialko, Brenda J. Prince
  • Publication number: 20120048497
    Abstract: The method for reducing interstitial elements in alloy castings which comprises the following steps: pouring the alloy for the formation of a casting; and allowing said alloy to cool. According to the method, at least a peripheral region of the casting is heated, so that the flux of interstitial elements is caused towards the at least one peripheral region. The method is achieved where most of the interstitial elements concentrate in at least one region in the surface region of the casting. At later stages these elements can be easily eliminated from the respective regions by means of a thermal surface treatment or surface machining of the casting.
    Type: Application
    Filed: August 22, 2011
    Publication date: March 1, 2012
    Inventor: Daniel Gaude Fugarolas
  • Publication number: 20120037330
    Abstract: A system and method for producing a metallic ingot using, for example, a VAR furnace, includes a primary crucible receiving a melted metal from a source of metal and collecting the melted metal to for a pool of melted metal, the primary crucible including an overflow lip, a secondary crucible receiving the melted metal from the overflow lip of the primary crucible, the secondary crucible being smaller than and electrically isolated from the primary crucible, and a withdrawal device withdrawing the molten metal, solidified by cooling, from the secondary crucible in the form of solidified ingots, wherein the solidified ingots have a smaller diameter than a diameter of the source of metal. A cutting device periodically cuts the withdrawn solidified ingots as they are withdrawn from the secondary crucible.
    Type: Application
    Filed: May 7, 2010
    Publication date: February 16, 2012
    Inventor: Michael K. Popper
  • Publication number: 20120024108
    Abstract: A system and process for reclaiming nickel and cadmium from a feed source such as Ni—Cd batteries. The feed source is shredded to produce feed particles, screened to size the particles, magnetically separated to remove non-metallic materials, and induction heated to generate nickel and cadmium products.
    Type: Application
    Filed: October 10, 2011
    Publication date: February 2, 2012
    Applicant: METAL CONVERSION TECHNOLOGIES, LLC
    Inventor: John A. PATTERSON
  • Patent number: 8074704
    Abstract: Methods and associated apparatus for semi-continuous casting of hollow ingots are described. In one embodiment a method for the semi-continuous casting of a metallic hollow ingot is provided. The method includes providing a mold that includes a mold center having an inner pipe and an outer pipe arranged to form an annular space for a cooling media and an outer mold, circulating a cooling media in the annular space, feeding a source material to the mold, heating the source material to produce a molten material, moving the mold center progressively downward relative to the outer mold, and solidifying the molten material to form a hollow ingot. Embodiments relating to an apparatus for semi-continuous casting of hollow ingots, and products resulting from the semi-continuous casting of hollow ingots are also described.
    Type: Grant
    Filed: March 24, 2010
    Date of Patent: December 13, 2011
    Assignee: Titanium Metals Corporation
    Inventors: Alan Blackburn, Richard Roth, Andrew Purse, David May
  • Publication number: 20110214830
    Abstract: To produce hollow ingots, at least two consumable electrodes having a diameter of at least 1.0 times the wall thickness of the hollow ingots are melted in a short, water-cooled mold that is flared particularly in a T-shape in the area of the consumable electrodes, wherein the inner wall of the hollow ingot is formed by a mandrel with a conicity of at least 1.5% that is installed in the mold from above, and the level of the liquid heel is maintained below the T-shaped flaring of the mold.
    Type: Application
    Filed: March 2, 2011
    Publication date: September 8, 2011
    Applicant: INTECO SPECIAL MELTING TECHNOLOGIES GMBH
    Inventors: Harald HOLZGRUBER, Michael BREITLER, Bertram OFNER
  • Publication number: 20110048665
    Abstract: A corrosion resistance system is disclosed that can be used in conjunction with a leaching device for removal of a mold from a cast component. The corrosion resistance system includes a container having a working fluid, such as a caustic fluid. A cast component and mold is placed within the container and a power supply is coupled to the component. During operation of the corrosion resistance system the cast component can be configured as an anode or as a cathode to provide for anodic or cathodic corrosion resistance. In one form the power supply is connected with an electrical conductor to the container and the cast component placed in electrical coupling with the container. An inert gas purge can supply an inert gas to the container. A vacuum pump can be used to remove gas from the container. Furthermore, an oxygen getter can be used in some embodiments.
    Type: Application
    Filed: August 9, 2010
    Publication date: March 3, 2011
    Inventors: Max Eric Schlienger, Michael Christopher Maguire, Michael Dean Baldwin
  • Publication number: 20100276112
    Abstract: One non-limiting embodiment of an apparatus for forming an alloy powder or preform includes a melting assembly, an atomizing assembly, and a collector. The melting assembly produces at least one of a stream of a molten alloy and a series of droplets of a molten alloy, and may be substantially free from ceramic in regions contacted by the molten alloy. The atomizing assembly generates electrons and impinges the electrons on molten alloy from the melting assembly, thereby producing molten alloy particles.
    Type: Application
    Filed: July 7, 2010
    Publication date: November 4, 2010
    Applicant: ATI Properties, Inc.
    Inventors: Robin M. Forbes Jones, Richard L. Kennedy
  • Publication number: 20100258262
    Abstract: Methods and apparatus for producing large diameter superalloy ingots are disclosed. A material comprising at least one of a metal and a metallic alloy is introduced into a pressure-regulated chamber in a melting assembly. The material is subjected to a wide-area electron field within the pressure-regulated chamber to heat the material to a temperature above the melting temperature of the material to form a molten alloy. At least one stream of molten alloy from the pressure-regulated chamber is provided from the melting assembly and is fed into an atomizing assembly, where particles of the molten alloy are generated by impinging electrons on the molten alloy to atomize the molten alloy. At least one of an electrostatic field and an electromagnetic field are produced to influence the particles of the molten alloy. The particles of the molten alloy are deposited onto a collector in a spray forming operation to form an alloy ingot.
    Type: Application
    Filed: June 23, 2010
    Publication date: October 14, 2010
    Applicant: ATI Properties, Inc.
    Inventor: Robin M. Forbes Jones
  • Publication number: 20100247946
    Abstract: Methods and associated apparatus for semi-continuous casting of hollow ingots are described. In one embodiment a method for the semi-continuous casting of a metallic hollow ingot is provided. The method includes providing a mold comprising a mold center having an inner pipe and an outer pipe arranged to form an annular space for a cooling media and an outer mold, circulating a cooling media in the annular space, feeding a source material to the mold, heating the source material to produce a molten material, moving the mold center progressively downward relative to the outer mold, and solidifying the molten material to form a hollow ingot. Embodiments relating to an apparatus for semi-continuous casting of hollow ingots, and products resulting from the semi-continuous casting of hollow ingots are also described.
    Type: Application
    Filed: March 24, 2010
    Publication date: September 30, 2010
    Applicant: TITANIUM METALS CORPORATION
    Inventors: Alan BLACKBURN, Richard ROTH, Andrew PURSE, David MAY
  • Publication number: 20100044003
    Abstract: A method and apparatus involve positioning an insert within a cavity of a mold, heating an insert wall within the cavity of the mold, and casting a molten metal into the cavity adjacent the insert. A surface of the insert absorbs heat from the molten metal to melt and fuse to the molten metal.
    Type: Application
    Filed: August 24, 2009
    Publication date: February 25, 2010
    Inventor: Mark A. Baumgarten
  • Publication number: 20090107293
    Abstract: The present invention relates to a method and an apparatus for forming flakes, especially metal flakes. The method comprises producing a heated stream of molten material, feeding the stream in a substantially vertically downward direction, receiving the downwardly directed stream and forming flakes therefrom, and effecting a change in the temperature of the stream subsequent to the production thereof whereby flakes of a desired thickness are obtained. The present invention is applicable to any metal which melts when heated and is capable of being formed into flakes. Examples of metals are Al, Cu, Mo, V, Ag, Cr, Zr, Nb, Ni, Fe, Co, Ti, Au, Pd, W, Hf, Rh, Ir, Pt, Cd or alloys thereof, such as chromium-nickel, iron-nickel, iron-chromium and nickel-cobalt, wherein Cu, Ag, Ti, or Al, or alloys thereof are preferred and Al, or Ag, or alloys thereof are most preferred.
    Type: Application
    Filed: October 9, 2006
    Publication date: April 30, 2009
    Inventors: Patrice Bujard, Peter Simmendinger
  • Publication number: 20080295991
    Abstract: The invention relates to the field of materials sciences and relates to a method such as can be used, for example, for producing molded articles from metallic glasses. The object of the present invention lies in disclosing a method and an apparatus in which a good mold filling during casting is achieved in addition to high cooling rates. The object is attained by a method in which a metal-containing melt is introduced into an electrically conducting casting mold, the metal-containing melt and the mold being connected in an electrically conducting manner to the outputs of the same voltage source during the introduction into a casting mold, so that a preset current flows through the boundary interface between the melt and the mold. The object is furthermore attained through an apparatus in which there is an electrically conducting connection to a voltage source between a metal-containing melt and an electrically conducting mold for the melt.
    Type: Application
    Filed: July 28, 2006
    Publication date: December 4, 2008
    Applicant: LEIBNZ-INSTITU FUER FESTKOERPE-UND WERKSTOFFORSCHU E.V. HELMHOLTZSTRASSE 20
    Inventors: Stefan Roth, Ludwig Schultz
  • Publication number: 20080179034
    Abstract: One non-limiting embodiment of an apparatus for forming an alloy powder or preform includes a melting assembly, an atomizing assembly, and a collector. The melting assembly produces at least one of a stream of a molten alloy and a series of droplets of a molten alloy, and may be substantially free from ceramic in regions contacted by the molten alloy. The atomizing assembly generates electrons and impinges the electrons on molten alloy from the melting assembly, thereby producing molten alloy particles.
    Type: Application
    Filed: March 21, 2008
    Publication date: July 31, 2008
    Applicant: ATI Properties, Inc.
    Inventors: Robin M. Forbes Jones, Richard L. Kennedy
  • Patent number: 7092484
    Abstract: The present invention is a method for inspecting objects. The method includes obtaining a structural model of a first object, the model providing dimensions and material properties for the first object, inspecting a second object to provide inspection data for at least two views of a structure of the second object, comparing inspection and predicted data based on the structural model of the first object and a simulation of the inspection process, reconstructing stereographic data for the second object based on the structural model of the first object and contributions of the inspection data of the second object. In another embodiment, where there is a structural model of an object, the object can be subjected to a dynamic process and the object is inspected throughout the process.
    Type: Grant
    Filed: June 13, 2003
    Date of Patent: August 15, 2006
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Terrence C. Jensen, Joseph N. Gray
  • Patent number: 7066726
    Abstract: The invention relates to a device for melting and conveying material such as plastic or metal. Said device comprises a conveying channel, which contains an admission opening for the material as well as a discharge opening for the at least partially melted material. The device also comprises heating devices that, between the admission opening and discharge opening, heat the conveying channel and/or the material, and comprises a slide that can move to-and-fro while conveying the material from the admission opening to the discharge opening. According to the invention, the conveying channel is provided with a tubular shape and with two walls and has an inner tube and an outer tube. The slide is provided as a sliding sleeve, which is placed between the inner tube and the outer tube, and is provided in two pieces. In addition, said slide comprises a closing sleeve for opening or closing the conveying channel and comprises a conveying sleeve that can be moved independent of the closing sleeve.
    Type: Grant
    Filed: June 30, 2001
    Date of Patent: June 27, 2006
    Assignee: Hengst GmbH & Co. KG
    Inventor: Christian Boehnke
  • Patent number: 7011136
    Abstract: A method and apparatus for melting metals uses microwave energy as the primary source of heat. The metal or mixture of metals are placed in a ceramic crucible which couples, at least partially, with the microwaves to be used. The crucible is encased in a ceramic casket for insulation and placed within a microwave chamber. The chamber may be evacuated and refilled to exclude oxygen. After melting, the crucible may be removed for pouring or poured within the chamber by dripping or running into a heated mold within the chamber. Apparent coupling of the microwaves with softened or molten metal produces high temperatures with great energy savings.
    Type: Grant
    Filed: November 12, 2001
    Date of Patent: March 14, 2006
    Assignee: BWXT Y-12, LLC
    Inventors: Alan F. Moore, Donald E. Schechter, Marvin Stanley Morrow
  • Patent number: 6843303
    Abstract: A method for making sand particle foundry mold members. Sand particles are coated with an aqueous dispersion of a suitable binder material such as a gelatin gel. The moist gelatin coated particles are gravity fed into a pattern box for the mold member and subjected to multi-axis vibration to pack the sand in the pattern box. The moist sand is then heated with radio frequency energy to promote binder flow to the corners of the particles, and air flow is initiated to transport water from the mass of particles to harden the mass of particles into the mold member.
    Type: Grant
    Filed: February 4, 2003
    Date of Patent: January 18, 2005
    Assignee: General Motors Corporation
    Inventors: June-Sang Siak, Gordon Alwin Tooley, Mei Cai, Richard Michael Schreck, William Thomas Whited
  • Patent number: 6820679
    Abstract: The invention relates to a method according to which a metal (13) is re-shaped by a primary forming process. The aim of the invention is to improve such a method so that heat can be relatively easily added to the part and so that the addition can be varied as regards space and time. To this end, a voltage is applied to parts of the primary forming device between which the metal is disposed during the insertion process and/or during the primary forming process and/or during a subsequent treatment in the primary form after the primary forming process so that a closed circuit is produced and heat energy is supplied to the metal by the closed circuit.
    Type: Grant
    Filed: September 12, 2002
    Date of Patent: November 23, 2004
    Assignee: DRM Druckguss GmbH
    Inventor: Peter Lutze
  • Publication number: 20040192806
    Abstract: The invention relates to the production of molds or cores (2) for foundry purposes, wherein a mixture (3) of foundry sand and binder are produced and introduced into a mold or core tool (8), e.g. shot in a core shooter. A known binder or magnesium sulfate with and/or without at least one or additionally several crystallization waters is dispersed or dissolved in water and used as binder, which is then mixed with the foundry sand and introduced or shot into the mold tool or the core box (8). For hardening purposes, the water and a fraction of the crystallization water are vaporized by heating and driven out by a gaseous medium, all of which can be carried out very rapidly. After pouring, said core or mold consisting of foundry sand can be very rapidly removed from the tool with water and flushed due to the fact that the magnesium sulfate preserves its capability of dissolving.
    Type: Application
    Filed: February 10, 2004
    Publication date: September 30, 2004
    Inventor: Bernd Kuhs
  • Patent number: 6793000
    Abstract: A method of operating a hot-chamber diecasting machine is provided in which, after the filling of the mold, a compressional vibration is generated which prevents the molten metal from rapidly solidifying at least in the narrowest cross-section of the feed orifice between the ascending bore and the mouthpiece and the mold. In this manner, it becomes possible to increase the afterpressure upon the molten metal in the mold in comparison to conventional hot-chamber diecasting processes in order to achieve cast parts of a higher quality.
    Type: Grant
    Filed: October 29, 2001
    Date of Patent: September 21, 2004
    Assignee: Oskar Frech GmbH & Co.
    Inventor: Roland Fink
  • Publication number: 20030089481
    Abstract: A method and apparatus for melting metals uses microwave energy as the primary source of heat. The metal or mixture of metals are placed in a ceramic crucible which couples, at least partially, with the microwaves to be used. The crucible is encased in a ceramic casket for insulation and placed within a microwave chamber. The chamber may be evacuated and refilled to exclude oxygen. After melting, the crucible may be removed for pouring or poured within the chamber by dripping or running into a heated mold within the chamber. Apparent coupling of the microwaves with softened or molten metal produces high temperatures with great energy savings.
    Type: Application
    Filed: November 12, 2001
    Publication date: May 15, 2003
    Inventors: Alan F. Moore, Donald E. Schechter, Marvin Stanley Morrow