Utilizing A Vacuum Patents (Class 164/474)
-
Patent number: 12139773Abstract: A method for producing ultra-thin hot-rolled strip steel, the method comprising the following process steps: A. a smelting process: feeding scrap steel into an induction electric furnace (1) for smelting so that the scrap steel melts into molten steel; B. a refining process: using a ladle refining furnace (2) and a ladle vacuum degassing furnace (3) to refine the molten steel; C. a continuous casting process: casting the refined molten steel into a cast strip blank that has a thickness of 1.6-2.5 mm by means of a dual-roller thin strip continuous casting system (4); D. a hot rolling process: directly feeding the cast strip blank that was cast in the continuous casting process to a single-stand hot rolling mill (9) for rolling to produce hot-rolled strip steel, the thickness of the hot-rolled strip steel being 0.8-1.5 mm; E. a cooling coiling process: performing atomizing cooling on the hot-rolled strip steel, and coiling after the strip steel temperature is controlled to be 400-750° C.Type: GrantFiled: September 12, 2019Date of Patent: November 12, 2024Assignee: BAOSHAN IRON & STEEL CO., LTD.Inventors: Yuan Fang, Jianchun Wu, Jian Zhang
-
Patent number: 11679427Abstract: An extrusion machine includes a main frame, a friction wheel, a tool holding device, a locking device and a tool unit supported on the tool holding device. Furthermore, a shielding unit with at least one first nozzle and at least one second nozzle is provided, wherein the nozzles are formed to emit a gas which is free of gaseous oxygen. The first nozzle is directed at a peripheral portion of the friction wheel. The second nozzle is arranged below a stripping area of the tool unit. Further, an extrusion machine has a sensor unit between the tool holding device and the tool unit and a method controls distance between two tool components of the extrusion machine. Furthermore, different extrusion machines as well as methods for changing friction wheels are provided.Type: GrantFiled: June 27, 2022Date of Patent: June 20, 2023Assignee: Asmag-Holding GmbHInventor: Mikola Huba
-
Patent number: 11045871Abstract: A casting mold (260) comprises a shell (262) extending from a lower end (264) to an upper end (266) and having: an interior space (280) for casting metal; and an opening (268) for receiving metal to be cast. A plurality of thermocouples (900) are vertically-spaced from each other on the shell.Type: GrantFiled: May 18, 2018Date of Patent: June 29, 2021Assignee: Raytheon Technologies CorporationInventors: John J. Marcin, Steven J. Bullied, Dilip M. Shah, Alan D. Cetel, Emily K. Kreek
-
Patent number: 10799944Abstract: A copper alloy material manufacturing equipment for manufacturing a copper alloy material by continuously casting molten copper. The equipment includes an element adding means for adding a metal element to the molten copper, a tundish for holding the molten copper containing the metal element, a pouring nozzle connected to the tundish to feed the molten copper from the tundish, and a trapping member arranged inside the tundish and including a same type of material as at least one of an oxide of the metal element, a nitride of the metal element, a carbide of the metal element and a sulfide of the metal element.Type: GrantFiled: June 14, 2017Date of Patent: October 13, 2020Assignee: HITACHI METALS, LTD.Inventors: Keisuke Fujito, Shohei Hata, Takayuki Tsuji, Hiromitsu Kuroda
-
Patent number: 8882940Abstract: Bulk solidifying amorphous alloys exhibiting improved processing and mechanical properties and methods of forming these alloys are provided. The bulk solidifying amorphous alloys are composed to have high Poisson's ratio values. Exemplary Pt-based bulk solidifying amorphous alloys having such high Poisson's ratio values are also described. The Pt-based alloys are based on Pt—Ni—Co—Cu—P alloys, and the mechanical properties of one exemplary alloy having a composition of substantially Pt57.5Cu14.7Ni5.3P22.5 are also described.Type: GrantFiled: February 1, 2012Date of Patent: November 11, 2014Assignee: Crucible Intellectual Property, LLCInventors: William Johnson, Jan Schroers
-
Patent number: 8858739Abstract: A method and system of forming a micro-wire including heating metal feedstock to a liquid state within a glass tube, wherein the metal feedstock includes an iron based glass forming alloy comprising one or more of nickel and cobalt present in the range of 7 atomic percent to 50 atomic percent and one or more of boron, carbon, silicon, phosphorous and nitrogen present in the range of 1 to 35 atomic percent. Negative pressure may be provided to the interior the glass tube and the glass tube containing the metal feedstock may be drawn down. The metal feedstock in the glass tube may be cooled at a rate sufficient to form a wire exhibiting crystalline microstructures present in the range of 2 to 90 percent by volume in a glass matrix.Type: GrantFiled: October 22, 2010Date of Patent: October 14, 2014Assignee: The NanoSteel Company, Inc.Inventors: Daniel James Branagan, Alla V. Sergueeva, Jikou Zhou, James N. Milloway
-
Patent number: 8689856Abstract: A continuous casting furnace is configured for efficiently continuously casting ingots, including titanium alloy ingots. The furnace is configured with an internal cutter for cutting an ingot within the furnace interior chamber. The furnace typically includes a first interior chamber in which a continuous casting mold is disposed and a withdrawal chamber which is separable from the first interior chamber to facilitate withdrawal of finished ingots therefrom while casting continues within the first chamber.Type: GrantFiled: March 5, 2013Date of Patent: April 8, 2014Assignee: RTI International Metals, Inc.Inventors: Michael P. Jacques, Kuang-O Yu
-
Patent number: 8308877Abstract: An amorphous alloy having the general formula of: (ZrxAlyCuzNi1-x-y-z)100-a-bScaYb, wherein x, y, and z are atomic percents, and a and b are atom molar ratios, in which: about 0.45?x?about 0.60; about 0.08?y?about 0.12; about 0.25?z?about 0.35; 0<a?about 5; and 0?b<about 0.1.Type: GrantFiled: September 24, 2010Date of Patent: November 13, 2012Assignee: Byd Company LimitedInventors: Qing Gong, Yongxi Jian, Faliang Zhang
-
Publication number: 20120043049Abstract: The invention relates to a process for the continuous casting of a slab (1), in particular of steel, wherein the cast slab (1) is conveyed through a furnace (2) and the slab (1) is subjected to a descaling operation. To increase the quality of the slab by reducing scale, the invention provides for the slab surface to undergo reduction in at least one section (3) of the furnace (2) as a result of an atmosphere consisting of an inert gas and hydrogen (H2) or of pure hydrogen being maintained in said section (3) of the furnace (2). The invention further relates to an apparatus for the continuous casting of a slab.Type: ApplicationFiled: April 19, 2010Publication date: February 23, 2012Applicant: SMS SIEMAG AKTIENGESELLSCHAFTInventors: Christian Klinkenberg, Christian Bilgen, Tilmann Böcher, Luc Neumann
-
Patent number: 7628952Abstract: Molten steel is conducted by a tubular shroud interconnecting a slide gate at a bottom tap hole of a ladle with the molten steel in an underlying tundish of a continuous caster. The flow path is confirmed to be isolated from contaminants in atmospheric air by applying a source of partial vacuum to the internal cavity of tubular shroud to allow prevailing atmospheric pressure acting on molten steel in a tundish to push molten steel upwardly in the internal cavity of the tubular shroud. A measure of the partial vacuum in the cavity of the shroud is used to assess the integrity of the gas tight seal. Before and after the integrity of the gas tight seal is determined, a three way valve is used to apply an inert gas to the volume in the cavity of the shroud.Type: GrantFiled: April 5, 2007Date of Patent: December 8, 2009Assignee: SMS Demag, Inc.Inventor: Albert J. Klimas
-
Publication number: 20080216985Abstract: A method for producing high-quality grain oriented magnetic steel sheet utilizes a steel alloy with (in wt %) Si: 2.5-4.0%, C: 0.02-0.10%, Al: 0.01-0.065%, N: 0.003-0.015%. The method utilizes an operational sequence whose individual steps (secondary metallurgical treatment of the molten metal, continuous casting of the molten metal into a strand, dividing of the strand into thin slabs, heating of the thin slabs, continuous hot rolling of the thin slabs into hot strip, cooling of the hot strip, coiling of the hot strip, cold rolling of the hot strip into cold strip, recrystallization and decarburization annealing of the cold strip, application of an annealing separator, final annealing of the recrystallization and decarburization annealed cold strip to form a Goss texture) are harmonized with one another, so that a magnetic steel sheet with optimized electromagnetic properties is obtained using conventional apparatus.Type: ApplicationFiled: July 20, 2006Publication date: September 11, 2008Inventors: Klaus Gunther, Ludger Lahn, Andreas Ploch, Eberhard Sowka
-
Patent number: 7004228Abstract: To make a raw alloy, consisting mostly of amorphous structure, highly productively and at a reduced cost for a nanocomposite magnet, a molten alloy represented by Fe100-x-y-zRxQyMz (where R is at least one element selected from Pr, Nd, Dy and Tb; Q is B and/or C; M is at least one element selected from Co, Al, Si, Ti, V, Cr, Mn, Ni, Cu, Ga, Zr, Nb, Mo, Ag, Pt, Au and Pb; and 1 at %?x<6 at %, 15 at %?y?30 at % and 0 at %?z?7 at %) is prepared. This molten alloy is rapidly cooled by a strip casting process in which the alloy is fed onto a chill roller, rotating at a peripheral velocity of 3 m/s to less than 20 m/s, at a feeding rate per unit contact width of 0.2 kg/min/cm to 5.2 kg/min/cm. In this manner, an alloy including at least 60 volume percent of amorphous phase can be obtained.Type: GrantFiled: September 25, 2001Date of Patent: February 28, 2006Assignees: Santoku Corporation, Neomax Co., Ltd.Inventors: Ryo Murakami, Hirokazu Kanekiyo, Satoshi Hirosawa
-
Patent number: 6890392Abstract: A method of making a material alloy for an iron-based rare earth magnet includes the step of forming a melt of an alloy with a composition of (Fe1-mTm)100-x-y-z-n(B1-pCp)xRyTi2Mn. T is Co and/or Ni; R is at least one element selected from Y (yttrium) and the rare earth elements; and M is at least one element selected from Al, Si, V, Cr, Mn, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Ag, Hf, Ta, W, Pt, Au and Pb, wherein the following inequalities are satisfied: 10<x?25 at %, *6?y<10 at %, 0.5?z?12 at %, 0?m?0.5, 0?n?10 at % and 0?p?0.25. Next, the melt is fed onto a shoot with a guide surface tilted at about 1 degree to about 80 degrees with respect to a horizontal plane, thereby moving the melt onto a melt/roller contact region. The melt is then rapidly cooled using a chill roller to make a rapidly solidified alloy including an R2Fe14B phase.Type: GrantFiled: August 19, 2002Date of Patent: May 10, 2005Assignee: Neomax Co., Ltd.Inventors: Hirokazu Kanekiyo, Toshio Miyoshi, Satoshi Hirosawa
-
Patent number: 6860317Abstract: Disclosed are a method and an apparatus for producing a uranium foil with fine crystalline granules by forming the foil by the gravitational dropping of molten uranium or uranium alloy and rapidly cooling the foil by the contact with cooling rolls, and a foil produced thereby. In accordance with the present invention, a high-purity and high-quality uranium foil with an isotropic structure and fine crystalline granules is easily produced via a simple process without requiring hot rolling and heat treatment processes. The surface of the foil is prevented from oxidizing and residual stress is not imparted to the foil. The productivity and the economic efficiency of the foil are improved.Type: GrantFiled: March 24, 2003Date of Patent: March 1, 2005Assignee: Korea Atomic Energy Research InstituteInventors: Chang-Kyu Kim, Ki-Hwan Kim, Seok-Jin Oh, Se-Jung Jang, Eung-Soo Kim
-
Patent number: 6793005Abstract: Disclosed are a method and an apparatus for continuously casting a uranium rod so that impurities generated in melting the metallic substance reduced from nuclear spent fuel are easily removed, the molten metal is easily degassed, the oxidation of uranium is prevented, and the molten metal does not remain in a crucible, thereby completely removing the noxious gas, improving the safety of work, allowing the workers to be close to the apparatus, reducing the consumption rate of the inert gas, completely preventing the oxidation of uranium, and being remotely controlled.Type: GrantFiled: November 18, 2002Date of Patent: September 21, 2004Assignees: Korea Atomic Energy Research Institute, Korea Hydro & Nuclear Power Co., Ltd.Inventors: Yoon-Sang Lee, Chang-Kyu Kim, Ki-Hwan Kim, Se-Jung Jang, Young-Joon Shin, Seong-Won Park
-
Patent number: 6695929Abstract: A melt of an iron-based rare earth material alloy, represented by (Fe1-mTm)100-x-y-zQxRyMz, is prepared, wherein T is Co and/or Ni; Q is B and/or C; R is selected from Y (yttrium) and the rare earth elements; M is selected from Al, Si, Ti, V, Cr, Mn, Cu, Zn, Ga, Zr, Nb, Mo, Ag, Hf, Ta, W, Pt, Au and Pb; 10≦x≦30 at %; 2%≦y<10 at %; 0≦z≦10 at % and 0≦m≦0.5. The melt is fed onto a guide to form a flow of the melt thereon and move the melt onto a melt/chill roller contact region, where the melt is rapidly cooled by the chill roller to make a rapidly solidified alloy. An oxygen concentration of the melt yet to be fed onto the guide is controlled at about 3,000 ppm or less in mass percentage.Type: GrantFiled: August 5, 2002Date of Patent: February 24, 2004Assignee: Sumitomo Special Co., Ltd.Inventors: Hirokazu Kanekiyo, Satoshi Hirosawa
-
Patent number: 6682611Abstract: A Zr-based bulk metallic glass formed using low purity materials at a low vacuum with a small amount of yttrium addition is provided. A method of improving the glass forming ability, crystallization and melting process without reducing the mechanical and elastic properties, such as hardness and Young's Modulus, of Zr-based alloys by yttrium addition, is also provided.Type: GrantFiled: October 30, 2001Date of Patent: January 27, 2004Assignee: Liquid Metal Technologies, Inc.Inventors: Yong Zhang, Ming Xiang Pan, De Qian Zhao, Wei Ilua Wang
-
Publication number: 20030234096Abstract: Disclosed are a method and an apparatus for continuously casting a uranium rod so that impurities generated in melting the metallic substance reduced from nuclear spent fuel are easily removed, the molten metal is easily degassed, the oxidation of uranium is prevented, and the molten metal does not remain in a crucible, thereby completely removing the noxious gas, improving the safety of work, allowing the workers to be close to the apparatus, reducing the consumption rate of the inert gas, completely preventing the oxidation of uranium, and being remotely controlled.Type: ApplicationFiled: November 18, 2002Publication date: December 25, 2003Inventors: Yoon-Sang Lee, Chang-Kyu Kim, Ki-Hwan Kim, Se-Jung Jang, Young-Joon Shin, Seong-Won Park
-
Publication number: 20030205353Abstract: A soft magnetic alloy fiber has a width of 10 &mgr;m or more to less than 500 &mgr;m, a thickness of 2 &mgr;m or more to less than 20 &mgr;m, and a Curie temperature of −50° C. or higher.Type: ApplicationFiled: May 29, 2003Publication date: November 6, 2003Applicant: Kabushiki Kaisha ToshibaInventors: Takao Sawa, Katsutoshi Nakagawa, Hisashi Takahashi, Teruo Murakami, Masao Obama
-
Patent number: 6415849Abstract: Method of preventing contact of oxygen with a metal melt during continuous casting, the metal melt flows into a casting chamber bounded by rolls and a hood and leaves this chamber as a stream. To completely prevent contact of oxygen with the metal melt and thus reoxidation, oxygen attempting to enter via any gaps between the walls and/or adhering to the walls is removed by suction applied at a succession of suction stages at the periphery of each roll before a gap between the hood and the roll at the top of the casting chamber. Inert gas may then flow to the rolls near the gap.Type: GrantFiled: August 13, 1999Date of Patent: July 9, 2002Assignee: Voest-Alpine Industrieanlagenbau GmbHInventors: Gerald Hohenbichler, Stefano Pellissetti, Romeo Capotosti, Guiseppe Guasto
-
Patent number: 6269862Abstract: A method for preparing a mould lubricant for use in direct chill casting of reactive metals, including magnesium, magnesium alloys, aluminum, and aluminum alloys, proceeds through combining a casting lubricant and a gaseous oxidation-inhibiting agent in a vessel external from the mold under vacuum conditions. The casting lubricant is selected from a variety of casting oils and casting greases. The gaseous oxidation-inhibiting agent is selected from a variety of inert gases, including sulfur hexafluoride (SF6).Type: GrantFiled: August 19, 1999Date of Patent: August 7, 2001Assignee: Cast Centre Pty Ltd.Inventors: Cheryl Richards, Stephen Ronald Peck, Phillip Wilmott Baker
-
Patent number: 6117389Abstract: Titanium killed steel sheets which are not troubled by nozzle clogging while they are produced in a continuous casting process, have few surface defects caused by cluster-type inclusions, and are highly rust resistant, and are formed from a melt of titanium killed steel that contains any one or two of Ca and metals REM in an amount of not smaller than 0.0005% by weight, and wherein the steel contains major oxide inclusions of any one or two of CaO and REM oxides in an amount of from about 5 to 50% by weight, Ti oxides in an amount of not larger than about 90% by weight, and Al.sub.2 O.sub.3 in an amount of not larger than about 70% by weight.Type: GrantFiled: September 24, 1998Date of Patent: September 12, 2000Assignee: Kawasaki Steel CorporationInventors: Seiji Nabeshima, Hirokazu Tozawa, Kenichi Sorimachi
-
Patent number: 5897830Abstract: A consumable billet for melting and casting a metal matrix composite component is made of a consolidated powder metal matrix composite having a titanium or titanium alloy matrix reinforced with particles. The preferred billet is a blended and sintered powder metal composite billet incorporating titanium carbide or titanium boride into a Ti--6Al--4V alloy.Type: GrantFiled: December 6, 1996Date of Patent: April 27, 1999Assignee: Dynamet TechnologyInventors: Stanley Abkowitz, Susan M. Abkowitz, Paul F. Weihrauch, Harold L. Heussi, Walter Zimmer
-
Patent number: 5458183Abstract: A continuous casting method includes the steps of continuously supplying molten metal into a mold through at least one feed nozzle connected to the mold through a break ring, with the feed nozzle, the mold and the break ring forming at least a portion of a continuous casting apparatus, and intermittently withdrawing a cast piece formed from the molten metal in the mold thereby creating pressure in a space formed at a connecting point between the break ring, the mold and the cast piece as a result of the withdrawal from the mold. A shield means is placed to seal-off space between the at least one feed nozzle, and the mold to prevent entry of gas into the continuous casting apparatus and the pressure is reduced in the sealed-off space to thereby eliminate a pressure differential between the pressure in the sealed-off space and the pressure created in the space formed at the connecting point between the break ring, the mold and the cast piece during the intermittent withdrawal from the mold.Type: GrantFiled: April 12, 1994Date of Patent: October 17, 1995Assignee: Nippon Steel CorporationInventors: Tatsuhito Matsushima, Seishiro Saita, Masayuki Inoue, Hiroyuki Nakashima, Shogo Matsumura, Hiroshi Iwasaki, Ryuuzou Hanzawa, Katsuhiko Kawamoto, Haruo Ohguro, Yukio Morimoto, Toshihiro Kosuge
-
Patent number: 4756788Abstract: The present invention provides a method and apparatus for taking up and winding a strip of material which is advancing at a selected velocity from a moving casting surface. Generally stated, the apparatus includes a take-up web supply mechanism for supplying a flexible, take-up web, and a winding mechanism, which has a reel for taking up and concentrically winding the strip and take-up web thereon in a laminated configuration. A connection mechanism connects the take-up web to the reel, and a reel drive mechanism rotates the reel to provide a peripheral velocity at a winding surface on the reel that substantially matches the velocity of the advancing strip. A directing mechanism directs the advancing strip onto the take-up web for transport to a winder nip region between the take-up web and the winding surface of the reel means to initiate winding.Type: GrantFiled: November 12, 1986Date of Patent: July 12, 1988Assignee: Allied-Signal Inc.Inventors: John R. Bedell, Naim S. Hemmat, Paul Jeges
-
Patent number: 4724895Abstract: Lead or bismuth fumes emitted from steel during a strand casting operation are confined, collected and removed.Type: GrantFiled: May 14, 1986Date of Patent: February 16, 1988Assignee: Inland Steel CompanyInventor: John L. Mulesa
-
Patent number: 4719963Abstract: The invention relates to a process and apparatus for the casting of metal strands, more particularly in the form of strips. The molten metal emerging from a slotted die 2 is applied to the cooling surface of a cooling member 1 which is moved past the slotted die 2. Allowing for the law of solidification, at the start of casting the strip outlet side die lip is gradually increased from a minimum distance from the cooling surface to the required final distance in such a way that the free gap between the wedge-shaped developing solidification front of the cast strip 7 and the die lip 5 remains small enough to prevent the molten metal from flowing out through the gap in an uncontrolled manner. The end face edge of the slotted die 2 can be borne via one or more gas cushions on the cooling surface and the free surface of the cast strand.Type: GrantFiled: June 12, 1986Date of Patent: January 19, 1988Assignee: Sundwiger Eisenhutte Maschinenfabrik Grah & Co.Inventors: Horst Schenk, Peter Dziura
-
Patent number: 4688621Abstract: A method and apparatus for casting rapidly solidified metal ingots wherein molten metal is centrifugally formed into molten droplets that are rapidly solidified under controlled conditions into metal particles which are cast against a rotating mold cavity within which the metal particles are consolidated into an ingot to be subsequently worked to a billet.Type: GrantFiled: June 9, 1986Date of Patent: August 25, 1987Inventor: Falih Darmara
-
Patent number: 4649984Abstract: An apparatus for casting metal strip includes a nozzle having an orifice for depositing a stream of molten metal onto a casting region of a moving chill surface. A conditioning shoe is located generally upstream from the nozzle in a direction opposite to the direction of chill surface movement to delimit a conditioning chamber. The conditioning chamber communicates directly with the nozzle orifice and borders at least three sidelines of the chill surface casting portion. A shield for minimizing an intrusion of ambient atmosphere into the conditioning chamber and for deflecting an entrained gas boundary layer carried along by the chill surface is cooperatively connected to the conditioning shoe. Gas control provides a selected, low density atmosphere, such as a partial vacuum, within the conditioning chamber.Type: GrantFiled: June 17, 1986Date of Patent: March 17, 1987Assignee: Allied CorporationInventors: John R. Bedell, Naim S. Hemmat, Paul Jeges
-
Patent number: 4644999Abstract: The present invention provides a method and apparatus for taking up and winding a strip of material which is advancing at a selected velocity from a moving casting surface. Generally stated, the apparatus includes a take-up web supply mechanism for supplying a flexible, take-up web, and a winding mechanism, which has a reel for taking up and concentrically winding the strip and take-up web thereon in a laminated configuration. A connection mechanism connects the take-up web to the reel, and a reel drive mechanism rotates the reel to provide a peripheral velocity at a winding surface on the reel that substantially matches the velocity of the advancing strip. A directing mechanism directs the advancing strip onto the take-up web for transport to a winder nip region between the take-up web and the winding surface of the reel means to initiate winding.Type: GrantFiled: January 25, 1985Date of Patent: February 24, 1987Assignee: Allied CorporationInventors: John R. Bedell, Naim S. Hemmat, Paul Jeges
-
Patent number: 4641704Abstract: A method is described for continuously casting an ingot of a metal alloy of the type having a substantial liquidus-solidus temperature range so that the ingot will have a "smooth" surface free of hot-tears. A succession of substantially equal volume quantities of the molten alloy is poured into a continuous casting mold at a pressure of less than about 10.sup.-3 Torr. The quantity of each pour is sufficient to cover the entire cross section of the mold by flow under the influence of gravity and each quantity is allowed to substantially solidify between pours to form successive axial increments which make up the ingot. Each increment is allowed to cool for at least about 30 seconds between pours to form a sufficiently solid side-wall to prevent hot-tears.Type: GrantFiled: January 25, 1985Date of Patent: February 10, 1987Assignee: Degussa Electronics Inc.Inventor: James H. C. Lowe
-
Patent number: 4611651Abstract: The vertically ascending casting of a thin-walled metal pipe and integral end fitting from a bath of molten metal is implemented using a housing 12 and a core 14 to mold the end fitting or bell housing and a tubular draw tube 6 to mold the pipe shank. The end fitting E is first formed by forcing the metal to rise in the annular space 16 between the housing and the core, simultaneously forming the initial section of the pipe shank. Once the end fitting has solidified it is extracted upwardly, step by step, while shank sections are simultaneously withdrawn from the metal bath. These sections are also solidified step by step along a tapering front S in the bath until the desired length of pipe T has been obtained.Type: GrantFiled: July 12, 1984Date of Patent: September 16, 1986Assignee: Pont-A-Mousson S.A.Inventors: Yves Gourmel, Michel Pierrel, Rio Bellocci
-
Patent number: 4592411Abstract: A method and apparatus for continuously casting a filament within a region of preselected vacuum and passing the filament to ambient region of higher pressure include a rotating casting wheel which has an annular peripheral quench surface. A guide housing encloses the casting wheel to separate the wheel from the ambient region and to delimit a guide region which is adapted to pass the filament therethrough to an exit region communicating into the ambient region. An extrusion housing delimits an extrusion chamber which communicates with the guide housing and has a portion of the quench surface disposed therein. An extrusion mechanism located in the extrusion chamber extrudes molten metal onto the quench surface to form the filament, and an extrusion vacuum mechanism provides a preselected vacuum in the extrusion chamber. A fluid jet mechanism disposed in the guide housing reduces the pressure in the extrusion chamber and directs the filament through the guide region.Type: GrantFiled: May 3, 1984Date of Patent: June 3, 1986Assignee: Allied CorporationInventors: John R. Bedell, Howard H. Liebermann
-
Patent number: 4589470Abstract: A cooling apparatus and related method for a continuous casting apparatus includes a series of spray nozzles for spraying a coolant against one surface of a moving chill substrate. The invention apparatus includes an enclosure having vacuum applied thereto for preventing migration of the sprayed coolant from the surface against which it is sprayed to the surface contacting the molten solidifying material. Any coolant having a tendency to escape along sealed edges of the enclosure is forced back into the enclosure by the pressure gradient. The edges are sealed by elongated plastic rods. Additionally, scrapers are provided for removing remanent coolant from the sprayed surface. The coolant is sprayed at a high velocity to increase its heat transferring efficiency.Type: GrantFiled: May 8, 1984Date of Patent: May 20, 1986Assignee: Electric Power Research Institute Inc.Inventors: John R. Bedell, Paul G. Friedmann, Julian H. Kushnick, Eli Rosenthal, James R. Hubbard, Christian J. Zingler
-
Patent number: 4562877Abstract: A method of rapidly solidifying thin metallic strips, comprising projecting a jet of molten metal or alloy under reduced atmospheric pressure onto a cold substrate moving at high speed, thereby forming the strip in contact with the substrate, and then bringing the strip rapidly into higher atmospheric pressure. Forming the strip on the substrate under reduced atmospheric pressure improves the quality of the edges and surface of the strip, while bringing the strip rapidly into higher atmospheric pressure improves the adherence of the strip to the substrate. If the strip is brought into higher atmospheric pressure before its temperature falls to the temperature of vitrification, the properties of the vitreous metal formed, including its ductility, are also improved, because of the more rapid passage through the temperature range above the vitrification temperature than if the metal were cooled under reduced pressure.Type: GrantFiled: December 21, 1984Date of Patent: January 7, 1986Assignee: Pont-a-Mousson S.A.Inventors: Pascal Fournier, Jean-Claude Peraud
-
Patent number: 4559992Abstract: The invention provides an apparatus and method for continuously casting a filament, such as a glassy metal filament, at high speed within a zone of preselected vacuum. A continuous extrusion mechanism and a rapidly moving quench surface are located within a casting module. A vacuum mechanism provides the preselected vacuum in the module as the filament is cast, and a transport mechanism continuously moves the resultant rapidly advancing filament across the boundary between the vacuum in the casting airlock mechanism substantially preserves the module vacuum as the cast filament is transported across the boundary and a passivator mechanism passivates the quench surface to prevent the filament from adhering thereto.Type: GrantFiled: January 17, 1983Date of Patent: December 24, 1985Assignee: Allied CorporationInventors: John R. Bedell, Robert W. Smith, Howard H. Liebermann
-
Patent number: 4531569Abstract: To produce tubes of reactive metals, a melt (14) is removed from the annu gap (13) of a crucible (10). The temperature of the melt (14) is such as to ensure the formation of the solidus-liquidus zone (33) directly behind the annular gap (13), a planar solidification front (34) being created in a non supported region which is not exposed to the direct influence of a cooling means. In the subsequent region, the oriented solidification of the tube with high temperature gradients is realized, and the tube can be shaped or adjusted free of thermal influences. Only thereafter, the tube (25) is exposed to the action of cooling means (26, 31) to cool it without contact. In such a way, it is possible to produce tubes having a high stability and resistance to temperatures for use in turbines, heat exchangers or the like.Type: GrantFiled: February 28, 1983Date of Patent: July 30, 1985Assignee: Deutsche Forschungs-Und Versuchsantalt Fur Luft- Und Raumfahrt E.V.Inventor: Klaus Fritscher
-
Patent number: 4330027Abstract: Strips of amorphous metal containing embedded particulate matter and method for making it. Strips of amorphous metal containing embedded particles of abrasive material are useful for working the surfaces of solid articles by abrasion for forming or surface improvement. The method of making such strips involves forcing molten metal of a glass-forming alloy containing admixed particulate matter onto the surface of a moving chill body under pressure through a slotted nozzle located in close proximity to the surface of the chill body.Type: GrantFiled: November 17, 1980Date of Patent: May 18, 1982Assignee: Allied CorporationInventor: Mandayam Narasimhan
-
Patent number: 4298050Abstract: In the continuous casting of steel, it has been possible to produce killed steel industrially, but semikilled and rimmed steel have not been successfully produced due to rimming action occurring in the oscillating mold. The present invention involves a concept of suppressing the nuclei of bubbles which will later grow into CO bubbles. In order to suppress the nuclei of bubbles and to form a non-defective solidification layer of a continuously cast strand, the present invention provides a combination of: a free oxygen concentration of from 50 to 200 ppm in the molten steel; a concave shape at the short sides of the mold; a propulsion forces of the molten steel directed along the long sides of the mold in directions opposite to one another; subjecting a solidification interface to an electromagnetic flow having a speed of from 0.1 to 1.Type: GrantFiled: November 6, 1979Date of Patent: November 3, 1981Assignee: Nippon Steel CorporationInventors: Tetsro Ohashi, Osamu Kitamura, Hiromu Fujii, Seizo Mineyuki, Eiichi Takeuchi
-
Patent number: 4285386Abstract: Defined shapes of thin metallic sheet are continuously formed by forcing molten metal onto the surface of a moving chill body under pressure through a slotted nozzle located in close proximity to the surface of the chill body. The surface of the chill body whereon the shaped parts are formed is provided with raised or lowered domains corresponding in outline to that of the desired defined shape. As the metal is cast, as a thin sheet against the chill surface, discontinuities arise in the sheet at the walls of the raised or lowered domains defining the desired shape so that sheet product of defined shape is obtained, as if punched out from a continuous strip of the metal.Type: GrantFiled: March 16, 1979Date of Patent: August 25, 1981Assignee: Allied Chemical CorporationInventor: Mandayam C. Narasimhan