Simultaneous Heating And Cooling Only In Limited Range Around Set Point Temperature Patents (Class 165/264)
  • Patent number: 8109328
    Abstract: A fluid temperature control device, which is particularly suitably applied to the temperature control of a processing liquid in a semiconductor device manufacturing process, capable of performing quickly and precisely the temperature control of a temperature-controlled fluid, and the device can also be made as small as possible. This fluid temperature control device includes a body block having flow passage grooves formed therein; heat transfer plates which are disposed on surfaces of the body block to form flow passages where a temperature-controlled fluid flows; heaters which heat the temperature-controlled fluid flowing through the flow passages via at least one of the heat transfer plates; and thermoelectric modules which heat and cool the temperature-controlled fluid flowing through the flow passages via at least one of the heat transfer plates.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: February 7, 2012
    Assignee: Kelk Ltd.
    Inventor: Hiroaki Takechi
  • Patent number: 7819179
    Abstract: A temperature control apparatus including a temperature control head kept in contact with an electronic device as a testing object thermally, an electric heater attached to the temperature control head, a refrigerant passage formed within the temperature control head so as to run through inside thereof, a compressor which compresses refrigerant coming out of the temperature control head, a temperature sensor which detects a temperature of refrigerant on an outlet side of the compressor, a condenser which condenses refrigerant coming out of the compressor, a returning portion which returns refrigerant condensed by the condenser to the temperature control head, and a control portion which bypasses the condensed refrigerant to the intake side of the compressor by a predetermined quantity corresponding to an output of the temperature sensor.
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: October 26, 2010
    Assignee: Daytona Control Co., Ltd.
    Inventors: Shintaro Hayashi, Osamu Urakawa, Mitsuo Koizumi
  • Publication number: 20100101771
    Abstract: A method and apparatus for controlling the temperature of a substrate support assembly includes a pedestal, a chuck connected to the pedestal, a cooling plate structure thermally coupled with the chuck, a heater thermally coupled with the cooling plate structure, and a controller configured to control the cooling plate structure while controlling the heater during processing of a substrate on the chuck. The method includes cooling a substrate support with a cooling plate structure while heating the cooling plate structure with a heater thermally coupled with the cooling plate structure, monitoring the performance of the cooling plate structure and the heater, and regulating the performance of the cooling plate structure and the heater to maintain the substrate support at a desired temperature.
    Type: Application
    Filed: October 21, 2009
    Publication date: April 29, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Shambhu N. Roy, Matt Cheng-Hsiung Tsai
  • Patent number: 7225864
    Abstract: A temperature control system for a semiconductor processing facility includes a common cooling unit for controlling the temperature of a cooling fluid and multiple remote temperature control modules that separately control temperatures of multiple process components. The temperature control modules are near process components and include a circulation loop for cooling fluid from the common cooling unit and a circulation loop for a heat transfer fluid received from a component. A heat exchanger within the temperature control module allows heat transfer between heat transfer fluid and cooling fluid, thereby cooling the component. A heat source may also be within the temperature control module to heat the heat transfer fluid and the component. The cooling unit may be a refrigeration unit that provides compressed refrigerant to the temperature control modules which may include an upstream thermal expansion valve and a downstream refrigerant flow control valve that form an evaporation chamber.
    Type: Grant
    Filed: April 6, 2001
    Date of Patent: June 5, 2007
    Assignee: Oriol Inc.
    Inventor: In Kwon Jeong
  • Patent number: 7201219
    Abstract: An air-conditioner is operated under one mode selected from among three modes, i.e., a cooling mode, a heating mode and an air-mixing mode. Conditioned air temperature is controlled by changing a cooling ability in the cooling mode, a heating ability in the heating mode, and a position of an air-mixing door in the air-mixing mode. When the operating mode is switched to the cooling mode or to the heating mode from another mode, the position of the air-mixing door is gradually changed to prevent an abrupt temperature drop or rise until a difference between a target temperature and an actual temperature becomes smaller than a predetermined value.
    Type: Grant
    Filed: October 9, 2003
    Date of Patent: April 10, 2007
    Assignee: DENSO Corporation
    Inventors: Hisashi Ieda, Mitsuyo Oomura
  • Patent number: 7191827
    Abstract: A refrigerator adapted for use in low ambient temperature conditions such as in an unheated garage or outdoors on a deck or patio. The refrigerator is provided with a low ambient heater to add heat to the refrigerated space when ambient temperatures outside the refrigerator are low enough that items stored in the refrigerator could freeze. The low ambient heater is controlled by an ambient thermostat located to sense temperatures outside the refrigerator. The low ambient heater and ambient thermostat are connected in the refrigerator control so that the ambient heater can not be energized when the cooling system is operating.
    Type: Grant
    Filed: December 23, 2003
    Date of Patent: March 20, 2007
    Assignee: Whirlpool Corporation
    Inventors: Brent A. Junge, Allan R. Steinkuhl, John R. Wisnoski, Ralph Tate, Jr., Marco Stura
  • Patent number: 7182130
    Abstract: The sample temperature regulator is provided with a heating block (3) having a sample container holder (6) and a temperature-controllable heater (7) and with a cooling block (4) having a cooling mechanism (11). These two blocks are combined with each other through a connecting plate (15) made of a material having a thermal conductivity lower than those of these blocks. This constitution can reduce heat transfer between the heating block and the cooling block and allows them to have wide temperature regulating ranges, as well as increased heating capacity and cooling capacity, respectively. Further, this constitution makes the structure of the temperature regulator simple and compact, so that the regulator has increased durability and can be offered at a low price.
    Type: Grant
    Filed: March 4, 2005
    Date of Patent: February 27, 2007
    Assignee: Eyela-Chino Inc.
    Inventor: Yuta Ohki
  • Patent number: 7069984
    Abstract: A temperature control system for multiple process components in a semiconductor processing facility includes a common cooling unit for controlling the temperature of a cooling fluid and multiple remote temperature control modules in fluid communications with the common cooling unit that separately control the temperature of the multiple process components. The remote temperature control modules are located near the process components and each remote temperature control module includes a circulation loop for the cooling fluid from the common cooling unit and a circulation loop for a heat transfer fluid that received from a process component. A heat exchanger within the remote temperature control module allows heat transfer between the heat transfer fluid and the cooling fluid, thereby cooling the process component. A heat source may also be included within the remote temperature control module to provide heat to the heat transfer fluid and to the process component.
    Type: Grant
    Filed: February 8, 2001
    Date of Patent: July 4, 2006
    Assignee: Oriol Inc.
    Inventor: In Kwon Jeong
  • Patent number: 7044213
    Abstract: A constant temperature refrigeration system for extensive temperature range application comprising a refrigerator, a low-temperature heat exchanger, a medium-temperature heat exchanger, a high-temperature heat exchanger, a pump, a first solenoid valve, a second solenoid valve, a third solenoid valve, a temperature sensor, a power regulator and a controller, the temperature sensor is utilized for determining the working fluid temperature and compare the actual input temperature, the actual output temperature and the predetermined temperature, and the controller is utilized for controlling the first solenoid valve, the second solenoid valve and the third solenoid valve for conveying the fluid to flow through various heat exchangers so that the working fluid is heated or cooled, with the result being that the working fluid temperature outputted is to reach the predetermined temperature, so as to acquire the working fluid having the exactly and precisely predetermined low temperature (?40° C. to 25° C.
    Type: Grant
    Filed: December 31, 2002
    Date of Patent: May 16, 2006
    Assignee: Industrial Technology Research Institute
    Inventors: Wen-Ruey Chang, Der-Yung Liu, Chan-Hsiang Chang
  • Patent number: 6988546
    Abstract: The sample temperature regulator is provided with a heating block (3) having a sample container holder (6) and a temperature-controllable heater (7) and with a cooling block (4) having a cooling mechanism (11). These two blocks are combined with each other through a connecting plate (15) made of a material having a thermal conductivity lower than those of these blocks. This constitution can reduce heat transfer between the heating block and the cooling block and allows them to have wide temperature regulating ranges, as well as increased heating capacity and cooling capacity, respectively. Further, this constitution makes the structure of the temperature regulator simple and compact, so that the regulator has increased durability and can be offered at a low price.
    Type: Grant
    Filed: November 24, 2000
    Date of Patent: January 24, 2006
    Assignee: Eyela-Chino Inc.
    Inventor: Yuta Ohki
  • Patent number: 6973958
    Abstract: A heat transfer apparatus includes one heat exchanging system having a compressor coupled between a condenser and a heat exchanger. A further heat exchanging system includes a water pump, an ion exchange filter coupled between the water pump and the heat exchanger, to filter negative ions, positive ions, mineral materials, and/or impurities from the water. A temperature detecting member may actuate a heater to maintain the water temperature. A water cycling system includes a water reservoir to maintain the water pressure in the further heat exchanging system. An air relief valve may relieve air bubbles to reduce shocks and vibrations in the heat exchanging system.
    Type: Grant
    Filed: October 19, 2004
    Date of Patent: December 13, 2005
    Inventor: Ching-Lung Chou
  • Patent number: 6889764
    Abstract: A cooling device for cooling an object to be processed to a target temperature comprises a plurality of contact members mounted on a placing table, for supporting the object such that the object opposes a top surface of the placing table with an interval, temperature sensors for outputting temperature information of the object supported by the contact members, a first cooling unit for cooling the placing table to a temperature lower than the target temperature to cool the object, a second cooling unit for heating the object cooled by the first cooling unit to a temperature almost equal to the target temperature, and a contrast circuit for performing a switching operation between cooling by the first cooling unit and heating by the second cooling unit on the basis of the temperature information from the temperature sensors.
    Type: Grant
    Filed: March 8, 2001
    Date of Patent: May 10, 2005
    Assignee: Tokyo Electron Limited
    Inventors: Tetsuya Sada, Osamu Hirose, Kiyohisa Tateyama
  • Patent number: 6874574
    Abstract: An improved, more efficient method of operation for a vehicle heating and air conditioning system electrically positions a temperature control actuator in accordance with a first temperature control schedule for coordinated control of compressor capacity and re-heating of the discharge air when air conditioning is enabled, in accordance with a second temperature control schedule when air conditioning is disabled. Both first and second temperature control schedules position the temperature control actuator as a function of the setting of the driver-manipulated temperature selector.
    Type: Grant
    Filed: November 6, 2001
    Date of Patent: April 5, 2005
    Assignee: Delphi Technologies, Inc.
    Inventors: Wayne Oliver Forrest, Lawrence Scherer, Nicholas Joseph Alonge, Jr., Elliott D. Keen, James E. Stoelting
  • Patent number: 6863123
    Abstract: A high thermal change rate of test apparatus aims to realize test equipment requirement of highly accelerated life test(HALT) and highly accelerated stress screening(HASS). Structurally, the apparatus is provided with a cabinet body with an interior for placing test specimen. The cabinet body is provided with elements of fans, electric heating tubes and liquid nitrogen nozzles therein. The positions of the cabinet body and the control system are separate. Several groups (normally 2 or 3 groups, depends on the size of cabinet) of liquid nitrogen pipes connecting the cabinet body are flexible stainless steel pipes for enclosing and insulating sleeve tubes. During full-speed temperature cooling, all groups of the pipes simultaneously eject liquid nitrogen. When temperature is constant, only one group of liquid nitrogen pipe with cryogenic valve and nozzles is used and micro-adjusted to achieve good temperature stability.
    Type: Grant
    Filed: October 3, 2002
    Date of Patent: March 8, 2005
    Assignee: Chung-Shan Institute of Science and Technology
    Inventors: Jeng-Yau Wang, Ruey-Shyong Song
  • Patent number: 6854514
    Abstract: A temperature control and process for adjusting the temperature of a workstation and a work medium at a workstation to a predetermined temperature. The temperature control comprises a cooling vehicle such as a heat exchanger, a coolant temperature sensor and control, a source of fluid coolant such as a manifold, a recirculating pump, a flow line to circulate the coolant to the workstation with the flow line containing a flow regulator and a heater, a bypass valve for bypassing the flow regulator and heater, and a workstation temperature sensor and control. The workstation temperature control controls the operation of the heater and bypass valve so that the temperature of the coolant is below the desired temperature for the workstation, thus achieving a rapid transient response while avoiding overcooling. The coolant temperature control and workstation temperature control may be in a temperature control computer, thus providing a large number of different operating sequences.
    Type: Grant
    Filed: August 6, 2001
    Date of Patent: February 15, 2005
    Assignee: FSI International, Inc.
    Inventors: Ben J. Sloan, William G. Reed
  • Publication number: 20040182563
    Abstract: A temperature control system for multiple process components in a semiconductor processing facility includes a common cooling unit for controlling the temperature of a cooling fluid and multiple remote temperature control modules in fluid communications with the common cooling unit that separately control the temperature of the multiple process components. The remote temperature control modules are located near the process components and each remote temperature control module includes a circulation loop for the cooling fluid from the common cooling unit and a circulation loop for a heat transfer fluid that is received from a process component. A heat exchanger within the remote temperature control module allows heat to be transferred from the heat transfer fluid to the cooling fluid, thereby providing cooling to the process component. A heat source may also be included within the remote temperature control module to provide heat to the heat transfer fluid and therefore to the process component.
    Type: Application
    Filed: February 8, 2001
    Publication date: September 23, 2004
    Inventor: In Kwon Jeong
  • Patent number: 6749016
    Abstract: In a brine temperature control apparatus, the temperature of brine in a tank disposed in a brine fluid circulating passage is controlled using a three-way proportional valve. The three-way proportional valve does not open and close in an abrupt ON/OFF fashion, but rather the degree of opening thereof for supplying chilled brine to the tank is gradually adjusted in proportion to a detection signal indicative of the brine temperature in the tank. Thus, a water hammer problem is avoided, and the coolant circulating circuit including such a three-way proportional valve can be used effectively even with large capacity chiller units.
    Type: Grant
    Filed: January 14, 2002
    Date of Patent: June 15, 2004
    Assignee: SMC Kabushiki Kaisha
    Inventor: Toru Ozawa
  • Patent number: 6736329
    Abstract: A heating unit for heat-transfer fluid for a central heating installation including a tubular external wall, a first end wall and a second end wall forming a substantially cylindrical space; a first tubular internal partition located substantially concentrically within the tubular external wall and forming a first annular space between the tubular external wall and the first internal partition; a second internal partition having a diameter smaller than the first internal partition located substantially concentrically within the first internal partition and forming a second annular space between the first internal partition and the second internal partition; a central pipe located inside the second internal partition, the second annular space being in communication with the central pipe adjacent to the first end wall and in communication with the first annular space adjacent to the second end wall; an inlet orifice opening out of the first annular space adjacent to the first end wall; an outlet orifice in the
    Type: Grant
    Filed: December 9, 2002
    Date of Patent: May 18, 2004
    Inventor: Ernest Doclo
  • Patent number: 6698512
    Abstract: An improved vehicle heating and air conditioning system includes a driver-manipulated temperature selector that is physically coupled to a discharge temperature control mechanism. The selector is operable in a normal mode in which movement of the selector away from a full cold setting produces a corresponding movement of the temperature control mechanism that increases the discharge air temperature by re-heating or a high fuel efficiency mode in which movement of the temperature selector away from the full cold setting allows the temperature control mechanism to remain in a full cold position for a limited range of selector movement while the discharge air temperature is increased by capacity reduction of the refrigerant compressor. The temperature selector is in the form of a rotary knob that is axially shiftable to change modes when the selector is positioned at the full cold setting and spring-biased so that the normal mode is established as the default mode.
    Type: Grant
    Filed: January 7, 2002
    Date of Patent: March 2, 2004
    Assignee: Delphi Technology, Inc.
    Inventors: Wayne Oliver Forrest, Phillip M. Sokolofsky
  • Publication number: 20030131984
    Abstract: In a brine temperature control apparatus, the temperature of brine in a tank disposed in a brine fluid circulating passage is controlled using a three-way proportional valve. The three-way proportional valve does not open and close in an abrupt ON/OFF fashion, but rather the degree of opening thereof for supplying chilled brine to the tank is gradually adjusted in proportion to a detection signal indicative of the brine temperature in the tank. Thus, a water hammer problem is avoided, and the coolant circulating circuit including such a three-way proportional valve can be used effectively even with large capacity chiller units.
    Type: Application
    Filed: January 14, 2002
    Publication date: July 17, 2003
    Applicant: SMC Corporation of America
    Inventor: Toru Ozawa
  • Publication number: 20030127219
    Abstract: An improved vehicle heating and air conditioning system includes a driver-manipulated temperature selector that is physically coupled to a discharge temperature control mechanism. The selector is operable in a normal mode in which movement of the selector away from a full cold setting produces a corresponding movement of the temperature control mechanism that increases the discharge air temperature by re-heating or a high fuel efficiency mode in which movement of the temperature selector away from the full cold setting allows the temperature control mechanism to remain in a full cold position for a limited range of selector movement while the discharge air temperature is increased by capacity reduction of the refrigerant compressor. The temperature selector is in the form of a rotary knob that is axially shiftable to change modes when the selector is positioned at the full cold setting and spring-biased so that the normal mode is established as the default mode.
    Type: Application
    Filed: January 7, 2002
    Publication date: July 10, 2003
    Inventors: Wayne Oliver Forrest, Phillip M. Sokolofsky
  • Publication number: 20030066639
    Abstract: A high thermal change rate of test apparatus aims to realize test equipment requirement of highly accelerated life test(HALT) and highly accelerated stress screening(HASS). Structurally, the apparatus is provided with a cabinet body with an interior for placing test specimen. The cabinet body is provided with elements of fans, electric heating tubes and liquid nitrogen nozzles therein. The positions of the cabinet body and the control system are separate. Several groups (normally 2 or 3 groups, depends on the size of cabinet) of liquid nitrogen pipes connecting the cabinet body are flexible stainless steel pipes for enclosing and insulating sleeve tubes. During full-speed temperature cooling, all groups of the pipes simultaneously eject liquid nitrogen. When temperature is constant, only one group of liquid nitrogen pipe with cryogenic valve and nozzles is used and micro-adjusted to achieve good temperature stability.
    Type: Application
    Filed: October 3, 2002
    Publication date: April 10, 2003
    Inventors: Jeng-Yau Wang, Ruey-Shyong Song
  • Patent number: 6533031
    Abstract: A method which extends the useful life of a lead-acid type battery by applying conductive cooling or heating directly to the bottom surface of the battery to maintain the battery at a constant temperature of about 25° C. regardless of the ambient temperature surrounding the battery. The method for thermally managing the battery comprises the steps of providing an equipment cabinet having an equipment chamber, providing the cabinet with a battery compartment exposed to ambient temperature changes, providing the battery, placing the battery in the battery compartment, providing a cold plate having a surface substantially coextensive with the surface of the battery, placing the surface of the cold plate in direct contact with the surface of the battery, providing a heating pad, placing the heating pad in direct contact with the cold plate, providing an insulation pad, and placing the insulation pad between the heating pad and a mounting for the cabinet.
    Type: Grant
    Filed: May 9, 2000
    Date of Patent: March 18, 2003
    Assignee: Marconi Communications, Inc.
    Inventors: Marvin P. Garcia, Michael R. Cosley
  • Patent number: 6499535
    Abstract: A temperature control unit for independent control of a number of independent channels, as can exist with a cluster tool used for semiconductor fabrication, has high efficiency, long term life and reliability, and requires only a small floor area. To these ends, the unit employs a single high capacity refrigeration system and disposes a number of separate temperature control channels for the individual tools, with only some channels receiving refrigerant. Low temperature channels use high pressure, sub-cooled refrigerant for chilling the heat transfer fluid to selected levels controlled by proportional valves adjusting refrigerant flow through evaporator heat exchanger units which cool heat transfer fluid. Moderate temperature channels cool the heat transfer fluid for associated tools to an ambient temperature level.
    Type: Grant
    Filed: June 13, 2001
    Date of Patent: December 31, 2002
    Assignee: B/E Aerospace
    Inventor: Kenneth W. Cowans
  • Patent number: 6463999
    Abstract: A multiloop temperature-control system has a hydraulic bus connected to a plurality of loops for the temperature-control medium and respective hydraulic modules connected to the hydraulic bus, and through the hydraulic bus, to these loops. Plug connectors join each hydraulic module with an electrical supply and control module and the supply and control modules in turn are connected by plug and jack connectors to an electrical bus.
    Type: Grant
    Filed: April 16, 1999
    Date of Patent: October 15, 2002
    Assignee: GWK Gesellschaft Warme Kaltetechnik mbH
    Inventor: Reinhold Jung
  • Patent number: 6412551
    Abstract: A temperature control system comprises a reservoir that is holding a hot fluid; a heat exchanger, for an electronic component, coupled to an input conduit that carries the hot fluid from the reservoir into the heat exchanger; an output conduit coupled to the heat exchanger, that carries the hot fluid from the heat exchanger back to the reservoir; a first temperature sensor, coupled to the input conduit; and a second temperature sensor, coupled to the output conduit. A heater is coupled to the output conduit which adds heat to the hot fluid in the output conduit in response to a heater control signal; and a cooler is coupled to the reservoir which adds cold fluid to the reservoir in response to a cooler control signal. A temperature controller generates the heater control signal and the cooler control signal as respective functions of both sensed temperatures.
    Type: Grant
    Filed: May 19, 2000
    Date of Patent: July 2, 2002
    Assignee: Unisys Corporation
    Inventors: Jerry Ihor Tustaniwskyj, James Wittman Babcock
  • Publication number: 20020029877
    Abstract: A temperature control unit for independent control of a number of independent channels, as can exist with a cluster tool used for semiconductor fabrication, has high efficiency, long term life and reliability, and requires only a small floor area. To these ends, the unit employs a single high capacity refrigeration system and disposes a number of separate temperature control channels for the individual tools, with only some channels receiving refrigerant. Low temperature channels use high pressure, sub-cooled refrigerant for chilling the heat transfer fluid to selected levels controlled by proportional valves adjusting refrigerant flow through evaporator heat exchanger units which cool heat transfer fluid. Moderate temperature channels cool the heat transfer fluid for associated tools to an ambient temperature level.
    Type: Application
    Filed: June 13, 2001
    Publication date: March 14, 2002
    Applicant: B/E Aerospace
    Inventor: Kenneth W. Cowans
  • Publication number: 20010047864
    Abstract: A temperature control and process for adjusting the temperature of a workstation and a work medium at a workstation to a predetermined temperature. The temperature control comprises a cooling vehicle such as a heat exchanger, a coolant temperature sensor and control, a source of fluid coolant such as a manifold, a recirculating pump, a flow line to circulate the coolant to the workstation with the flow line containing a flow regulator and a heater, a bypass valve for bypassing the flow regulator and heater, and a workstation temperature sensor and control. The workstation temperature control controls the operation of the heater and bypass valve so that the temperature of the coolant is below the desired temperature for the workstation, thus achieving a rapid transient response while avoiding overcooling. The coolant temperature control and workstation temperature control may be in a temperature control computer, thus providing a large number of different operating sequences.
    Type: Application
    Filed: August 6, 2001
    Publication date: December 6, 2001
    Inventors: Ben J. Sloan, William G. Reed
  • Patent number: 6308776
    Abstract: A temperature control and process for adjusting the temperature of a workstation and a work medium at a workstation to a predetermined temperature. The temperature control comprises a cooling vehicle such as a heat exchanger, a coolant temperature sensor and control, a source of fluid coolant such as a manifold, a recirculating pump, a flow line to circulate the coolant to the workstation with the flow line containing a flow regulator and a heater, a bypass valve for bypassing the flow regulator and heater, and a workstation temperature sensor and control. The workstation temperature control controls the operation of the heater and bypass valve so that the temperature of the coolant is below the desired temperature for the workstation, thus achieving a rapid transient response while avoiding overcooling. The coolant temperature control and workstation temperature control may be in a temperature control computer, thus providing a large number of different operating sequences.
    Type: Grant
    Filed: January 7, 1998
    Date of Patent: October 30, 2001
    Assignee: FSI International, Inc.
    Inventors: Ben J. Sloan, William G. Reed
  • Publication number: 20010017035
    Abstract: A cooling device for cooling an object to be processed to a target temperature comprises a plurality of contact members mounted on a placing table, for supporting the object such that the object opposes a top surface of the placing table with an interval, temperature sensors for outputting temperature information of the object supported by the contact members, a first cooling unit for cooling the placing table to a temperature lower than the target temperature to cool the object, a second cooling unit for heating the object cooled by the first cooling unit to a temperature almost equal to the target temperature, and a contrast circuit for performing a switching operation between cooling by the first cooling unit and heating by the second cooling unit on the basis of the temperature information from the temperature sensors.
    Type: Application
    Filed: March 8, 2001
    Publication date: August 30, 2001
    Inventors: Tetsuya Sada, Osamu Hirose, Kiyohisa Tateyama
  • Patent number: 6271024
    Abstract: A fast thermal cycler has a temperature chamber divided into a top, hot compartment heated by heating lamps and a bottom cold compartment cooled by liquid nitrogen, for optimizing thermal cycling rates for devices under test, such as solar cells, for rapid thermal life testing where both compartments use pressurized gaseous nitrogen for thermal conduction and regulation and a motor drive repetitively transports a test device mounted on a panel transiting between the two compartments. The thermal cycler is enhanced by computer control, enabling in-situ electrical testing, fail-safe heating, precision temperature heating and cooling phases, operator alerting and thermal gradient control during the temperature cycling.
    Type: Grant
    Filed: February 18, 1999
    Date of Patent: August 7, 2001
    Assignee: The Aerospace Corporation
    Inventors: Charles Sve, Pierre Rogelio Valenzuela, Timothy Steven Wall, Robert Walter Francis, Robert Bay Pan, Steven John VanWormer
  • Patent number: 6247531
    Abstract: A temperature control unit for independent control of a number of independent channels, as can exist with a cluster tool used for semiconductor fabrication, has high efficiency, long term life and reliability, and requires only a small floor area. To these ends, the unit employs a single high capacity refrigeration system and disposes a number of separate temperature control channels for the individual tools, with only some channels receiving refrigerant. Low temperature channels use high pressure, sub-cooled refrigerant for chilling the heat transfer fluid to selected levels controlled by proportional valves adjusting refrigerant flow through evaporator heat exchanger units which cool heat transfer fluid. Moderate temperature channels cool the heat transfer fluid for associated tools to an ambient temperature level.
    Type: Grant
    Filed: July 18, 2000
    Date of Patent: June 19, 2001
    Assignee: B/E Aerospace
    Inventor: Kenneth W. Cowans
  • Publication number: 20010000880
    Abstract: Supplemental heat mechanisms are employed to ensure that refrigerant in evaporative cold plates for electronic modules not only returns to the compressor in a vapor phase but also further operates to maintain electronic circuit junction temperatures at relatively constant temperature levels. Furthermore, the supplemental heating system responds within a time frame which is faster than other methods which may be employed to achieve the same or similar objectives. In particular, in preferred embodiments of the present invention pressure and temperature measurements of refrigerant exiting the evaporative cold plate are employed to control the turning on of supplemental electrical resistive heating elements to make up for thermal dissipation fluctuations occurring in the electronic module. The supplemental heat may be provided either with a single flat element or through the use of in-line heating elements.
    Type: Application
    Filed: December 19, 2000
    Publication date: May 10, 2001
    Applicant: International Business Machines Corporation
    Inventors: Richard C. Chu, Gregory M. Chrysler
  • Patent number: 6216475
    Abstract: A cooling device for cooling an object to be processed to a target temperature comprises a plurality of contact members mounted on a placing table, for supporting the object such that the object opposes a top surface of the placing table with an interval, temperature sensors for outputting temperature information of the object supported by the contact members, a first cooling unit for cooling the placing table to a temperature lower than the target temperature to cool the object, a second cooling unit for heating the object cooled by the first cooling unit to a temperature almost equal to the target temperature, and a contrast circuit for performing a switching operation between cooling by the first cooling unit and heating by the second cooling unit on the basis of the temperature information from the temperature sensors.
    Type: Grant
    Filed: July 22, 1999
    Date of Patent: April 17, 2001
    Assignee: Tokyo Electron Limited
    Inventors: Tetsuya Sada, Osamu Hirose, Kiyohisa Tateyama
  • Patent number: 6102113
    Abstract: A temperature control unit for independent control of a number of independent channels, as can exist with a cluster tool used for semiconductor fabrication, has high efficiency, long term life and reliability, and requires only a small floor area. To these ends, the unit employs a single high capacity refrigeration system and disposes a number of separate temperature control channels for the individual tools, with only some channels receiving refrigerant. Low temperature channels use high pressure, sub-cooled refrigerant for chilling the heat transfer fluid to selected levels controlled by proportional valves adjusting refrigerant flow through evaporator heat exchanger units which cool heat transfer fluid. Moderate temperature channels cool the heat transfer fluid for associated tools to an ambient temperature level.
    Type: Grant
    Filed: September 16, 1997
    Date of Patent: August 15, 2000
    Assignee: B/E Aerospace
    Inventor: Kenneth W. Cowans
  • Patent number: 6003595
    Abstract: A cylindrical casing 33 is provided in a tank 25 in which a pump 14 and a heat exchanger 15 are assembled. A heater 12 is mounted at the top of the tank 25 in such a way that its heating section 12a is inserted into the casing 33. A constant-temperature liquid is fed from an inlet 36 at the lower end of the casing 33, fills the inside of the casing 33, and then flows out from the outlet 37 at the upper end, while it is simultaneously heated by the heater 12.
    Type: Grant
    Filed: January 27, 1998
    Date of Patent: December 21, 1999
    Assignee: SMC Corporation
    Inventor: Mitsuhiro Watanabe
  • Patent number: 5941083
    Abstract: A cooling device for cooling an object to be processed to a target temperature comprises a plurality of contact members mounted on a placing table, for supporting the object such that the object opposes a top surface of the placing table with an interval, temperature sensors for outputting temperature information of the object supported by the contact members, a first cooling unit for cooling the placing table to a temperature lower than the target temperature to cool the object, a second cooling unit for heating the object cooled by the first cooling unit to a temperature almost equal to the target temperature, and a contrast circuit for performing a switching operation between cooling by the first cooling unit and heating by the second cooling unit on the basis of the temperature information from the temperature sensors.
    Type: Grant
    Filed: January 18, 1996
    Date of Patent: August 24, 1999
    Assignee: Tokyo Electron Limited
    Inventors: Tetsuya Sada, Osamu Hirose, Kiyohisa Tateyama
  • Patent number: 5755282
    Abstract: An air-conditioning apparatus for use in a vehicle includes bypass means for forming a bypass duct to allow the air which has passed through an evaporator to bypass an heater core, opening/closing means for opening and closing the bypass duct, and refrigerant control means for switching between a supply state in which refrigerant is supplied to the evaporator to a stop state in which the supply of the refrigerant to the evaporator is stopped based on a temperature of air having just passed through the evaporator. When it is determined that a physical amount relating to the temperature of the air introduced into a casing is greater than a predetermined amount and when the control state of the refrigerant control means is switched from the stop state to the supply state, the bypass duct is closed for a first predetermined time period by control means with the opening/closing means. In this way, it is possible to prevent the foggy air from being generated.
    Type: Grant
    Filed: August 20, 1996
    Date of Patent: May 26, 1998
    Assignees: Nippondenso Co., Ltd., Jaguar Cars Limited
    Inventors: Takashi Teshima, Tetsumi Ikeda, David Richard Bradley
  • Patent number: 5706890
    Abstract: A temperature control and process for adjusting the temperature of a workstation and a work medium at a workstation to a predetermined temperature. The temperature control comprises a cooling vehicle such as a heat exchanger, a coolant temperature sensor and control, a source of fluid coolant such as a manifold, a recirculating pump, a flow line to circulate the coolant to the workstation with the flow line containing a flow regulator and a heater, a bypass valve for bypassing the flow regulator and heater, and a workstation temperature sensor and control. The workstation temperature control controls the operation of the heater and bypass valve so that the temperature of the coolant is below the desired temperature for the workstation, thus achieving a rapid transient response while avoiding overcooling. The coolant temperature control and workstation temperature control may be in a temperature control computer, thus providing a large number of different operating sequences.
    Type: Grant
    Filed: January 21, 1994
    Date of Patent: January 13, 1998
    Assignee: FSI International, Inc.
    Inventors: Ben J. Sloan, William G. Reed