Condenser Or Evaporator Patents (Class 165/302)
  • Patent number: 9920996
    Abstract: The system and method of controlling a level of flooding to remain substantially constant within a flooded heat exchanger wherein steam flows into a steam side and condenses to form condensate that partly floods the steam side and that flows out of the steam side, and wherein cold water flows into a water side in heat exchange relationship with the steam side to heat the cold water and form heated water that flows out of the water side, comprises collecting the water condensate flowing out of the heat exchanger condensate outlet into a level controller through a controller condensate inlet; connecting the level controller to a steam source having a pressure equivalent to that of the heat exchanger steam side; and controlling the level of condensate in the level controller to remain substantially constant with a controller valve that allows condensate to be exhausted out through a controller condensate outlet if the level of the condensate in the level controller rises beyond a valve activation threshold where
    Type: Grant
    Filed: February 26, 2015
    Date of Patent: March 20, 2018
    Assignee: MAXI-THERME INC.
    Inventor: Raymond Lach
  • Publication number: 20150144076
    Abstract: A heat recovery vapor trap is provided for removal of vapor condensate from a container, while preventing any appreciable escape of vapor, and for achieving beneficial heat recovery from said condensate prior to temperature degradation associated with depressurization, whereby useful heating to much higher temperature is possible. The trap is indirect acting, and is preferably mechanically actuated by a float.
    Type: Application
    Filed: June 13, 2014
    Publication date: May 28, 2015
    Inventor: Donald C. Erickson
  • Patent number: 8955507
    Abstract: A furnace or other heat exchanger application for heating, ventilation, air conditioning and refrigeration systems having condensate control. Specifically, a condensate control for secondary heat exchangers is provided for use with high efficiency furnaces, particularly for small tonnage systems, such as residential or unitary systems. Condensate management permits a plurality of furnace orientations while providing resistance to corrosion due to liquid condensate.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: February 17, 2015
    Assignee: Johnson Controls Technology Company
    Inventors: Tabraiz Ali Khan, Robert Cabrera, Gregory Kenneth Reaser, Terry Hill
  • Publication number: 20150021007
    Abstract: A fluid cooler, fluid cooler core and method of condensing gas is disclosed. The fluid cooler includes a container for a liquid transfer medium. The container includes first and second hot fluid inlets, first and second cooled liquid outlets, a cooling liquid inlet, and a cooling liquid outlet. A first conduit extends within the container and fluidly couples the first hot fluid inlet to the first cooled liquid outlet. A second conduit extends within the container and fluidly couples the second hot fluid inlet to the second cooled liquid outlet. A third conduit extends within the container and fluidly couples the cooling liquid inlet to the cooling liquid outlet. The first, second, and third conduits are positioned to be at least partially submerged in the liquid transfer medium when the container contains the liquid transfer medium.
    Type: Application
    Filed: June 24, 2014
    Publication date: January 22, 2015
    Applicant: SCICAN LTD.
    Inventors: David Snaith, Andy Kwan-Leung Sun
  • Patent number: 8701746
    Abstract: Systems and methods for determining liquid depth information in a condensate pan of a climate control unit are provided. The systems and methods radiate a light beam into a liquid contained in a condensate pan associated with a climate control unit. The light beam is detected at a point of the condensate pan that is below a surface of the liquid. Information related to the depth of the liquid is determined based at least in part on the detected light beam. The systems and methods disclosed herein can determine if liquid depth in a condensate pan is greater than a threshold depth and can control evacuation of the liquid from the condensate pan.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: April 22, 2014
    Assignee: Schneider Electric IT Corporation
    Inventor: Daniel J. Rohr
  • Patent number: 8497029
    Abstract: Ceramic materials with relatively high resistance to wetting by various liquids, such as water, are presented, along with articles made with these materials. The oxide materials described herein as a class typically contain one or more of ytterbia (Yb2O3) and europia (Eu2O3). The oxides may further contain other additives, such as oxides of gadolinium (Gd), samarium (Sm), dysprosium (Dy), or terbium (Tb). In certain embodiments the oxide, in addition to the ytterbia and/or europia, further comprises lanthanum (La), praseodymium (Pr), or neodymium (Nd).
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: July 30, 2013
    Assignee: General Electric Company
    Inventors: Molly Maureen Gentleman, James Anthony Ruud, Margaret Louise Blohm, Mohan Manoharan
  • Patent number: 8449993
    Abstract: Articles coated with wetting resistant materials are presented. One embodiment is an article comprising a substrate and a coating having low surface connected porosity disposed on the substrate. The coating comprises an oxide, which comprises aluminum, yttrium, and at least one rare earth element according to the following atomic proportions: (RxY1-x)3Al5O12 where x is in the range from about 0.001 to about 0.999, and where R is at least one of the rare earth elements, Y is yttrium, O is oxygen, and Al is aluminum.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: May 28, 2013
    Assignee: General Electric Company
    Inventors: Molly Maureen Gentleman, James Anthony Ruud
  • Patent number: 8393318
    Abstract: A furnace or other heat exchanger application for heating, ventilation, air conditioning and refrigeration systems having condensate control. Specifically, the disclosure includes condensate control for secondary heat exchangers for use with high efficiency furnaces, particularly for small tonnage systems, such as residential or unitary systems. The application provides condensate management to permit a plurality of furnace orientations while providing resistance to corrosion due to liquid condensate, while providing a furnace system that utilizes less expensive materials and is easily fabricated.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: March 12, 2013
    Assignee: Johnson Controls Technology Company
    Inventors: Tabraiz Ali Khan, Robert Cabrera, Gregory Kenneth Reaser, Terry Hill
  • Patent number: 8251130
    Abstract: A gas leak detecting system for a gas cooler includes, a gas cooler (1) for cooling a gas, which is supplied to and discharged from the interior of a cooler water chamber (2) via piping, with a coolant supplied to and discharged from the interior of the cooler water chamber; an automatic exhaust valve (12) for automatically discharging the gas, which has leaked into the cooler water chamber, to the outside; a gas leak detecting vessel (8) for accumulating a leakage gas discharged from the automatic exhaust valve; and a gas detecting device (13) for detecting the leakage gas within the gas leak detecting vessel.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: August 28, 2012
    Assignee: Mitsubishi Heavy Industries Compressor Corporation
    Inventors: Ryoji Ogasawara, Tsukasa Shimakawa, Michio Kubota
  • Patent number: 8097223
    Abstract: An autoclave waste fluid disposal device includes an outer housing container with a main inlet port for receiving waste fluids from an autoclave, and a main outlet port. A multi-chambered condenser inside the outer housing container includes an inlet tube connected to an innermost primary chamber. A secondary chamber envelopes the primary chamber and has an upper end sealed about the inlet tube and at least one secondary chamber outlet port. A tertiary chamber enveloping the secondary chamber has a closed lower end, an upper end sealed about the inlet tube, and at least one tertiary chamber outlet port in communication with the outer housing container. A coil tube encircles the multi-chambered condenser and has a first end connected to the main inlet port of the outer housing container and a second end connected to the inlet tube of the multi-chambered condenser.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: January 17, 2012
    Inventor: Lance Moon
  • Publication number: 20110100027
    Abstract: A cryo probe head for the transmission/reception of RF signals for NMR measurements with a heat exchanger (1) for cooling heat sources (5), the heat exchanger having a contact element (4.2) for thermal connection between a cryogenic fluid and the heat source, is characterized in that the heat exchanger comprises a container having an interior volume VB into which a first cryogenic fluid F1 that has a liquid component F1L and a gaseous component F1G flows through an inflow conduit (8) and from which a second cryogenic fluid F2 that has liquid component F2L and a gaseous component F2G flows out through an outflow conduit (9). The inflow conduit has a flow cross-section QZ and a circumference UZ from which a characteristic conduit volume VZ=4·Q2Z/UZ results, wherein VB>10·VZ, and the outflow conduit has a flow diameter QA wherein QA?QZ. The contact element is in close thermal contact with both the liquid volume component VL of the cryogenic fluid and with the heat source.
    Type: Application
    Filed: October 27, 2010
    Publication date: May 5, 2011
    Inventors: Marc A. Schnell, Marc Enrique Paredes, Cengiz Cetrefli, Philippe Stauffenegger, Daniel Marek
  • Patent number: 7841208
    Abstract: A compression refrigeration system and evaporator having multiple circuits. Spray nozzles are provided for atomization and expansion of the refrigerant. The atomizing spray nozzles are interposed in each evaporator circuit and the nozzles are sized to distribute atomized refrigerant to the various evaporator circuits based on airflow rates across the associated circuit.
    Type: Grant
    Filed: August 9, 2007
    Date of Patent: November 30, 2010
    Assignee: Refrigerant Technologies, Inc. Arizona Corporation
    Inventor: Randy Lefor
  • Patent number: 7723845
    Abstract: The present invention is a MEMS-based two-phase LHP (loop heat pipe) and CPL (capillary pumped loop) using semiconductor grade silicon and microlithographic/anisotrophic etching techniques to achieve a planar configuration. The principal working material is silicon (and compatible borosilicate glass where necessary), particularly compatible with the cooling needs for electronic and computer chips and package cooling. The microloop heat pipes (?LHP™) utilize cutting edge microfabrication techniques. The device has no pump or moving parts, and is capable of moving heat at high power densities, using revolutionary coherent porous silicon (CPS) wicks. The CPS wicks minimize packaging thermal mismatch stress and improves strength-to-weight ratio. Also burst-through pressures can be controlled as the diameter of the coherent pores can be controlled on a sub-micron scale. The two phase planar operation provides extremely low specific thermal resistance (20-60 w/cm2).
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: May 25, 2010
    Assignee: University of Cincinnati
    Inventors: H. Thurman Henderson, Ahmed Shuja, Srinivas Parimi, Frank M. Gerner, Praveen Medis
  • Patent number: 7723760
    Abstract: The present invention is a MEMS-based two-phase LHP (loop heat pipe) and CPL (capillary pumped loop) using semiconductor grade silicon and microlithographic/anisotrophic etching techniques to achieve a planar configuration. The principal working material is silicon (and compatible borosilicate glass where necessary), particularly compatible with the cooling needs for electronic and computer chips and package cooling. The microloop heat pipes (?LHP™) utilize cutting edge microfabrication techniques. The device has no pump or moving parts, and is capable of moving heat at high power densities, using revolutionary coherent porous silicon (CPS) wicks. The CPS wicks minimize packaging thermal mismatch stress and improves strength-to-weight ratio. Also burst-through pressures can be controlled as the diameter of the coherent pores can be controlled on a sub-micron scale. The two phase planar operation provides extremely low specific thermal resistance (20-60 w/cm2).
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: May 25, 2010
    Assignee: University of Cincinnati
    Inventors: H. Thurman Henderson, Ahmed Shuja, Srinivas Parimi, Frank M. Gerner, Praveen Medis
  • Publication number: 20090301112
    Abstract: A direct expansion ammonia refrigeration system and a method of direct expansion ammonia refrigeration is described and which includes a source of liquid ammonia refrigerant which is delivered in fluid flowing relation to a plurality of evaporator tubes which incorporate wicking structures, and which through capillary action facilitated by the wicking structures are effective for drawing liquid ammonia refrigerant along the inside facing surface of the evaporator tubes so as to substantially reduce any stratified and/or wavy flow patterns of the liquid ammonia refrigerant within the evaporator tubes. The invention further includes a novel accumulator vessel and heat exchanger vessel which are coupled in fluid flowing relation relative to the direct expansion ammonia refrigeration system and which facilitate the removal of water from the ammonia refrigerant in order to enhance the operation of the direct expansion ammonia refrigeration system.
    Type: Application
    Filed: June 6, 2008
    Publication date: December 10, 2009
    Inventor: Bruce Ian Nelson
  • Patent number: 7246658
    Abstract: A heat exchanger extracts heat from a two-phase fluid coolant so that the coolant changes from a vapor state to a liquid state. Two valves have respective inlets which communicate with the coolant in the heat exchanger, and which are physically spaced from each other. Valve control structure responds to the presence of liquid at the inlet to either valve by opening that valve, so that the liquid coolant flows through the valve to a discharge section. A different feature involves a housing with a heat exchanger therein, the heat exchanger having a plurality of coolant conduits that are axially spaced. A flow of air travels axially within the housing, then flows transversely past the conduits to the other side thereof, and then resumes flowing axially on the other side of the conduits.
    Type: Grant
    Filed: October 31, 2003
    Date of Patent: July 24, 2007
    Assignee: Raytheon Company
    Inventors: William Gerald Wyatt, James L. Haws, Richard M. Weber
  • Patent number: 7073342
    Abstract: The whole main tank for housing the constant temperature liquid the temperature of which is adjusted by a temperature adjusting device is supported in a sub tank with a gap as a heat insulating layer around the main tank. A liquid level regulating mechanism supplies and discharges the constant temperature liquid between inside of the main tank and the gap formed in the sub tank to thereby achieve heat insulation and regulation of the liquid level of the constant temperature liquid housed in the main tank by utilizing the same gap in the sub tank.
    Type: Grant
    Filed: August 9, 2004
    Date of Patent: July 11, 2006
    Assignee: SMC Corporation
    Inventors: Tetsuo Sakaguchi, Hirohito Niimi
  • Publication number: 20040154786
    Abstract: The heat exchange system is used for heating a first fluid with a second fluid, and includes a first fluid circuit comprising an upstream end, a downstream end and an intermediate portion therebetween and a second fluid circuit comprising an upstream end, a downstream end and an intermediate portion therebetween. The heat exchange system also includes a flooded heat exchanger unit wherein the intermediate portions of the first and second fluid circuits extend and are in adjacent, thermally-conductive contact for allowing heat transfer from the second fluid to the first fluid. The flooded heat exchanger is capable of being flooded in a determined proportion within the second fluid circuit intermediate portion.
    Type: Application
    Filed: February 7, 2003
    Publication date: August 12, 2004
    Inventor: Raymond Lach
  • Publication number: 20040094295
    Abstract: An evaporative heat exchanger of a medium condenser of a air condition system with less cooling fins even without cooling fins which a novel coil assembly composed of a plurality of streamline cross sectional tubes is used to instead of conventional round tubes for providing an ultra high evaporative efficiency therefore, and having the further improvement of easy to clean and convenient for maintenance.
    Type: Application
    Filed: January 23, 2003
    Publication date: May 20, 2004
    Applicant: Air Tech. Co., Ltd.
    Inventors: Ho Hsin Wu, Charles Y. Dean
  • Patent number: 6269873
    Abstract: A method for controlling heat exchange in a nuclear reactor. The reactor contains at least one thermal valve, at least one heat exchanger having a coolant flowing therein, with the heat exchanger being immersed in a pool containing a fluid. The heat exchanger is confined by a container having an upper part with an opening therein and a lower part having means for introducing the fluid through such lower part as well as means for partially or totally opening or closing said opening in the upper part and means for partially or totally opening or closing opening in the lower part. The method comprises the steps of closing the opening in the upper part of the container to thereby vaporize said fluid, in order to cause a cessation of heat exchange between the coolant and the fluid; and opening the opening in the upper part of the container to thereby cause the fluid to be heated and to rise by convection, thereby permitting heat exchange to occur between the coolant and the fluid.
    Type: Grant
    Filed: June 7, 1999
    Date of Patent: August 7, 2001
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Guy-Marie Gautier, Patrick Aujollet, Jean-François Pignatel
  • Patent number: 6195406
    Abstract: A pressurizer includes a casing in which at least one spray line ends. The spray line is guided through a wall in a lower region of the casing and is disposed in such a way as to run upward inside the casing. The spray line ends at its geodetically highest point.
    Type: Grant
    Filed: June 21, 1999
    Date of Patent: February 27, 2001
    Assignee: Siemens Aktiengesellschaft
    Inventors: Hermann-Josef Conrads, Erwin Laurer, Jürgen Model, Karl Fäser
  • Patent number: 6116028
    Abstract: A method of operating a power generation system is provided. The system includes a turbine, a distiller/condenser, a boiler, and a superheater. The turbine expands a superheated multicomponent working fluid to produce power. The distiller/condenser transforms the expanded multicomponent working fluid into first and second concentration multicomponent working fluids. The first concentration multicomponent working fluid has a first concentration of a component of the multicomponent working fluid. The second concentration multicomponent working fluid has a second concentration of the component which is different than the first concentration. The boiler vaporizes a feed multicomponent working fluid. The superheater superheats the vaporized feed multicomponent working fluid to form the superheated multicomponent working fluid. In operating the system, the temperature of the vaporized multicomponent working fluid is sensed.
    Type: Grant
    Filed: January 13, 1999
    Date of Patent: September 12, 2000
    Assignee: ABB Alstom Power Inc.
    Inventors: Paul L. Hansen, Paul D. Kuczma, Jens O. Palsson, Jonathan S. Simon
  • Patent number: 6062825
    Abstract: A water release system includes a compact aftercooler connected to receive hot, moisture laden compressed air from a compressor having a load cycle under control of a governor. A water release valve is connected between a header of the aftercooler and an unloader pressure line connected to the governor. The valve ordinarily remains open until it receives a certain, pressure value signal from the unloader line which is effective to close the valve. A switch is located in pressure sensing relationship with the aftercooler, and a solenoid valve is electrically connected to the pressure sensitive switch and pneumatically connected between the water release valve and the governor.
    Type: Grant
    Filed: January 21, 1998
    Date of Patent: May 16, 2000
    Inventor: Dale A. Chovan
  • Patent number: 5971063
    Abstract: A vapor condenser includes a conduit defining a passage for guidingly communicating a vapor stream in a vapor flow direction from an inlet at a first location to a second location, a first heat exchanger between the first and second locations for open heat exchange between the vapor and a first coolant, the first coolant flowing in a direction that is counter to the vapor flow direction, and a second heat exchanger between the first and second locations for open heat exchange between the vapor and a second coolant. The vapor condenser automatically controls the flow rate of coolant in the first heat exchanger in response to changes in the density of the vapor in the vapor stream entering the conduit. Control of the flow rate of coolant is maintained, for example, by controlling the flow rate of individual dispersal devices, such as nozzles, or by controlling the number of nozzles operating.
    Type: Grant
    Filed: May 30, 1996
    Date of Patent: October 26, 1999
    Assignee: The Mart Corporation
    Inventor: Marc Treppler
  • Patent number: 5638691
    Abstract: Compression refrigeration apparatus for removing heat from a heat load using a falling film evaporator, operated with an azeotropic refrigerant and utilizing a spray tree distribution system that distributes a refrigerant film on a heat exchange surface by spraying liquid refrigerant onto a surface and allowing the refrigerant to drip onto the primary heat exchange surface. The apparatus allows for efficient recovery of lubricant deposited in the evaporator without redistributing the lubricant within the evaporator. In an alternative embodiment, liquid refrigerant is sprayed onto a mesh screen where it drips onto the primary heat exchange surface.
    Type: Grant
    Filed: March 6, 1996
    Date of Patent: June 17, 1997
    Assignee: American Standard Inc.
    Inventors: Jon P. Hartfield, Duane F. Sanborn