Abstract: A stirling engine which uses a dual pressure shell surrounding the high pressure and temperature engine components. Space between the shells is filled with an incompressible and insulating liquid material, such as a liquid salt. The liquid may have a filler material to prevent excessive movement. The liquid provides a time varying pressure field, driven by the pressure variations in the Stirling engine working fluid, which cancels the pressure differential on heat transfer tubing. The heat transfer tubing is inside of a dome which contains an incompressible, highly thermally conductive liquid, such as Sodium. The combination described allows a Stirling engine to operate at significantly higher temperatures and pressures relative to existing technology.
Abstract: There is provided a heat exchanger with a receiver which has a small diameter and compact size without a liquid refrigerant suction pipe.The interior of a header tube 2 is partitioned into three chambers A, C, and F by partition plates 8a and 8b. The chamber C is provided with a refrigerant inlet 6, and the chamber F with a refrigerant outlet 7. Also, the interior of a header tube 3 is partitioned into chambers B, D, and E by partition plates 8c and 9. Receiver connecting flanges 11 are inserted in the side surface of the chambers B and E, and a receiver body 18 is fixed via receiver headers 21. An inlet passage 16 and an outlet passage 17 are formed in the receiver connecting flange 11 and the receiver header 21. A liquid refrigerant entering through the inlet passage 16 after passing through the chamber B drops in the receiver body 18 by gravity, and is conducted through the refrigerant outlet 7 after going through the outlet passage 17, chamber E, heat exchange tubes 4, and chamber F.