Abstract: An improved heat exchanger (60) includes plural relatively flat conduits (62) adapted to accommodate passage of heat transfer fluid therethrough. Each conduit (62) has inlet and outlet openings, a supply channel (100) communicating with the corresponding inlet opening to direct heat transfer fluid flowing through the corresponding inlet opening into the corresponding conduit (62), a drain channel (102) communicating with the corresponding outlet opening to direct heat transfer fluid out of the corresponding conduit (62) through the corresponding outlet opening, and plural heat transfer channels (92) communicating between the supply and drain channels (100, 102) to direct heat transfer fluid therebetween in a generally transverse direction relative to respective major axes of the supply and drain channels (100, 102). The supply and drain channels (100, 102) each have a substantially greater length and cross-sectional area than the length and cross-sectional area of each heat transfer channel (92).
Type:
Grant
Filed:
June 10, 1998
Date of Patent:
January 25, 2000
Assignee:
Heatcraft Inc.
Inventors:
Young L. Bae, Michael E. Heidenreich, Roger A. Loomis, Benjamin W. McElwrath, Jr.
Abstract: An improved heat exchanger includes plural relatively flat conduits adapted to accommodate passage of heat transfer fluid therethrough. Each conduit has inlet and outlet openings, a supply channel communicating with the corresponding inlet opening to direct heat transfer fluid flowing through the corresponding inlet opening into the corresponding conduit, a drain channel communicating with the corresponding outlet opening to direct heat transfer fluid out of the corresponding conduit through the corresponding outlet opening, and plural heat transfer channels communicating between the supply and drain channels to direct heat transfer fluid therebetween in a generally transverse direction relative to respective major axes of the supply and drain channels. The supply and drain channels each have a substantially greater cross-sectional area than the cross-sectional area of each heat transfer channel.
Abstract: The design and assembly of past modular cooling systems required that cooling modules with different fluids be separated, lowering the efficiency of the system. The present invention overcomes this problem by providing a modular cooling system with a plurality of cooling modules, one of which is a hydraulic oil cooler. The cooling modules are connected to a bottom tank which has a top plate with a pair of openings 64,68 therethrough in each cooling module location so that fluid communication is established between the plurality of cooling modules and the bottom tank. However, fluid communication is blocked between the hydraulic oil cooler module and the bottom tank by inserting a plug in the openings so that fluid within the bottom tank is not leaked to the atmosphere. This results in the ability to mount the hydraulic oil cooler module on the bottom tank along with the remaining plurality of cooling modules having a different fluid therein.