Specific Or Diverse Material Patents (Class 175/374)
  • Patent number: 8261858
    Abstract: The disclosure provides a super abrasive element containing a substantially catalyst-free thermally stable polycrystalline diamond (TSP) body having pores and a contact surface, a base adjacent the contact surface of the TSP body; and an infiltrant material infiltrated in the base and in the pores of the TSP body at the contact surface. The disclosure additionally provides earth-boring drill bits and other devices containing such super abrasive elements. The disclosure further provides methods and mold assemblies for forming such super abrasive elements via infiltration and hot press methods.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: September 11, 2012
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Brian Atkins, Seth G. Anderle, Robert W. Arfele, Ram L. Ladi, Brandon Paul Linford, Jason Keith Wiggins, Kevin Duy Nguyen, Jiang Qian, Kenneth Eugene Bertagnolli, Shawn Casey Scott, Debkumar Mukhopadhyay, Michael Alexander Vail
  • Publication number: 20120211282
    Abstract: A rolling cone drill bit for cutting a borehole comprises a rolling cone cutter mounted on a bit body and adapted for rotation about a cone axis. Further, the bit comprises a tooth extending from the cone cutter. The tooth includes a base at the cone cutter and an elongate chisel crest distal the cone cutter. The crest extends along a crest median line between a first crest end and a second crest end and includes an elongate crest apex. The tooth also includes a first flanking surface extending from the base to the crest, and a second flanking surface extending from the base to the crest. The first flanking surface and the second flanking surface taper towards one another to form the chisel crest. Moreover, the tooth includes a first raised rib extending continuously along the first flanking surfaces and across the chisel crest to the second flanking surface.
    Type: Application
    Filed: February 18, 2011
    Publication date: August 23, 2012
    Applicant: NATIONAL OILWELL VARCO, L.P.
    Inventors: Thang Vo, Tom Scott Roberts, Adrian Reyes, Robert Morton
  • Patent number: 8230762
    Abstract: Methods of manufacturing rotary drill bits for drilling subterranean formations include forming a plurality of boron carbide particles into a body having a shape corresponding to at least a portion of a bit body of a rotary drill bit, infiltrating the plurality of boron carbide particles with a molten aluminum or aluminum-based material, and cooling the molten aluminum or aluminum-based material to form a solid matrix material surrounding the boron carbide particles. In additional methods, a green powder component is provided that includes a plurality of particles each comprising boron carbide and a plurality of particles each comprising aluminum or an aluminum-based alloy material. The green powder component is at least partially sintered to provide a bit body, and a shank is attached to the bit body.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: July 31, 2012
    Assignee: Baker Hughes Incorporated
    Inventors: Heeman Choe, John H. Stevens, James C. Westhoff, Jimmy W. Eason, James L. Overstreet
  • Patent number: 8225886
    Abstract: An article of manufacture includes a cemented carbide piece and a joining phase that binds the cemented carbide piece into the article. The joining phase includes inorganic particles and a matrix material. The matrix material is a metal and a metallic alloy. The melting temperature of the inorganic particles is higher than the melting temperature of the matrix material. A method includes infiltrating the space between the inorganic particles and the cemented carbide piece with a molten metal or metal alloy followed by solidification of the metal or metal alloy to form an article of manufacture.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: July 24, 2012
    Assignee: TDY Industries, LLC
    Inventors: Prakash K. Mirchandani, Michale E. Waller, Morris E. Chandler, Heath C. Coleman
  • Patent number: 8211203
    Abstract: A matrix powder for forming a matrix bit body, the matrix powder essentially consisting of a plurality of carbide particles having a particle size distribution of ±20% of a median particle size; and a plurality of metal binder particles is disclosed.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: July 3, 2012
    Assignee: Smith International, Inc.
    Inventors: Xiayang Sheng, Alan W. Lockstedt, Gregory T. Lockwood
  • Patent number: 8205692
    Abstract: A drill bit for cutting a borehole comprises a bit body. In addition, the drill bit comprises a rolling cone cutter mounted on the bit body and adapted for rotation about a cone axis. Further, the drill bit comprises at least one insert having a base portion secured in the rolling cone cutter and a cutting portion extending therefrom. The cutting portion includes a pair of flanking surfaces that taper towards one another to form an elongate chisel crest including a first crest end, a second crest end, and an apex positioned therebetween. A transverse radius of curvature at the first crest end is less than a transverse radius of curvature at the apex, and a transverse radius of curvature at the second crest end is less than the transverse radius of curvature at the apex.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: June 26, 2012
    Assignee: Smith International, Inc.
    Inventors: Scott D. McDonough, Brandon M. Moss, James C. Minikus
  • Patent number: 8191654
    Abstract: A drill bit includes a bit body having a face on which two different types of cutting elements are disposed, the first type being cutting elements suitable for drilling at least one subterranean formation and the second type being cutting elements suitable for drilling through a casing bit disposed at an end of a casing or liner string and cementing equipment or other components, if such are disposed within the casing or liner string, as well as cement inside as well as exterior to the casing or liner string. The second type of cutting elements exhibits a relatively greater exposure than the first type of cutting elements, so as to engage the interior of the casing bit and, if present, cementing equipment components and cement to drill therethrough, after which the second type of cutting elements quickly wears upon engagement with the subterranean formation material exterior to the casing bit, and the first type of cutting elements continues to drill the subterranean formation.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: June 5, 2012
    Assignee: Baker Hughes Incorporated
    Inventors: Eric E. McClain, John C. Thomas, Sarvesh Tyagi, Jack T. Oldham, Lester I. Clark, William Heuser
  • Publication number: 20120125694
    Abstract: The present invention includes a matrix powder system comprising one or more polycrystalline carbides, binderless carbides, or a combination thereof, a composite comprising the matrix powder system and a metal bond phase, a matrix bit body for a drill bit for oil and gas drilling made of this composite material, and a drill bit for oil and gas drilling comprising the matrix bit body and at least one cutter. The polycrystalline and/or binderless carbides may comprise carbides of W, Ti, V, Cr, Nb, Mo, Ta, Hf, Zr, or a combination thereof. The binderless carbides have less than 3 wt. % binder and the binderless and/or polycrystalline carbides may have a grain size of ?15 ?m and a hardness of ?1900 HV (0.5 kgf). Additional ceramic components and/or metals may also be present in the matrix powder system. Alternatively, the composite material may be present on only a portion of the matrix bit body surface.
    Type: Application
    Filed: November 24, 2010
    Publication date: May 24, 2012
    Applicant: KENNAMETAL INC.
    Inventors: Xin Deng, Debangshu Banerjee, Michael Wilfert
  • Patent number: 8182778
    Abstract: The invention relates to boron carbide and to a method for making the same, as well as to a super-abrasive material and a machine device including said boron carbide. The boron carbide of the invention has the following formula BC5 and has a diamond-type cubic structure with a mesh parameter a=3.635±0.006 &angst. The boron carbide of the invention can particularly be used in the field of machining.
    Type: Grant
    Filed: April 9, 2008
    Date of Patent: May 22, 2012
    Assignees: Centre National de la Recherche Scientifique, Universite Pierre et Marie Curie (Paris 6), European Synchrotron Radiation Facility
    Inventors: Yann Le Godec, Mohamed Mezouar, Denis Andrault, Vladimir Solozhenko, Oleksandr Kurakevych
  • Publication number: 20120097456
    Abstract: The present invention relates to compositions for forming at least a portion of an earth-boring rotary drill bit. The rotary drill bit may comprise a cemented transition metal carbide composition containing at least one precipitate transition metal carbide phase and at least one binder phase. The binder phase may comprise an alloy of at least one of cobalt, iron, and nickel having a melting point less than 1350° C.
    Type: Application
    Filed: December 1, 2011
    Publication date: April 26, 2012
    Applicants: Baker Hughes Incorporated, TDY INDUSTRIES, INC.
    Inventors: Prakash K. Mirchandani, Jimmy W. Eason, James J. Oakes, James C. Westhoff, Gabriel B. Collins, John H. Stevens, Steven G. Caldwell, Alfred J. Mosco
  • Publication number: 20120097455
    Abstract: Binder compositions for use in forming a bit body of an earth-boring bit includes at least one of cobalt, nickel, and iron, and at least one melting point-reducing constituent selected from at least one of a transition metal carbide up to 60 weight percent, a transition metal boride up to 60 weight percent, and a transition metal silicide up to 60 weight percent, wherein the weight percentages are based on the total weight of the binder. Earth-boring bit bodies include a cemented tungsten carbide material comprising tungsten carbide and a metallic binder, wherein the tungsten carbide comprises greater than 75 volume percent of the cemented tungsten carbide material.
    Type: Application
    Filed: December 1, 2011
    Publication date: April 26, 2012
    Applicants: BAKER HUGHES INCORPORATED, TDY INDUSTRIES, INC.
    Inventors: Prakash K. Mirchandani, Jimmy W. Eason, James J. Oakes, James C. Westhoff, Gabriel B. Collins
  • Publication number: 20120080236
    Abstract: A rotary cone drill bit includes: a body, a leg depending from the body, a bearing shaft extending from the leg and a cone mounted to the bearing shaft. The leg includes a surface edge that is subject to wear during operation of the bit. A bottom surface of a hard material plate having an edge is attached to a conforming surface of the leg in a position where the edge of the hard material plate defines at least a portion of the surface edge of the leg. The attachment of the surfaces is made using a flowable material such as a brazing material.
    Type: Application
    Filed: October 1, 2010
    Publication date: April 5, 2012
    Applicant: VAREL INTERNATIONAL, IND., L.P.
    Inventor: Inpeng Bouaphanh
  • Publication number: 20120080238
    Abstract: A rotary cone drill bit includes: a body, a leg depending from the body, a bearing shaft extending from the leg and a cone mounted to the bearing shaft. The leg includes a leading edge (at an outer surface or shoulder surface, for example) that is subject to wear during operation of the bit. A bottom surface of a hard material plate having an edge is attached to a conforming surface of the leg in a position where the edge of the hard material plate defines at least a portion of the leading edge of the leg. The attachment of the surfaces is made using a flowable material such as a brazing material.
    Type: Application
    Filed: June 9, 2011
    Publication date: April 5, 2012
    Applicant: VAREL INTERNATIONAL, IND., L.P.
    Inventor: Inpeng Bouaphanh
  • Publication number: 20120080237
    Abstract: A rotary cone drill bit includes: a body, a leg depending from the body, a bearing shaft extending from the leg and a cone mounted to the bearing shaft. The leg includes a surface location that is subject to wear during operation of the bit. A bottom surface of a hard material plate is attached to a substantially conforming surface of the leg at the location subject to wear. The attachment of the conforming surfaces is made using a flowable material such as a brazing material.
    Type: Application
    Filed: October 1, 2010
    Publication date: April 5, 2012
    Applicant: VAREL INTERNATIONAL, IND., L.P.
    Inventor: Inpeng Bouaphanh
  • Publication number: 20120067651
    Abstract: A hardfacing composition comprising a carbide phase and a matrix phase, The carbide phase comprises mono-tungsten carbide in a quantity of greater than 50 percent by weight, based on the total weight of the carbide phase. The matrix phase comprises iron and nickel. The nickel is present in a quantity in the range of from 0.5 to 20 percent by weight, based on the total weight of the matrix phase. Also included are methods of applying such hardfacing compositions to a downhole tool and downhole tools having such hardfacing compositions applied thereon.
    Type: Application
    Filed: September 15, 2011
    Publication date: March 22, 2012
    Applicant: Smith International, Inc.
    Inventors: Sike Xia, Yong Zhou
  • Patent number: 8087324
    Abstract: The present invention relates to compositions and methods for forming a bit body for an earth-boring bit. The bit body may comprise hard particles, wherein the hard particles comprise at least one of carbide, nitride, boride, oxide and solid solutions thereof, and a binder binding together the hard particles. The binder may comprise at least one metal selected from cobalt, nickel, and iron, and, optionally, at least one melting point reducing constituent selected from a transition metal carbide in the range of 30 to 60 weight percent, boron up to 10 weight percent, silicon up to 20 weight percent, chromium up to 20 weight percent, and manganese up to 25 weight percent, wherein the weight percentages are based on the total weight of the binder.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: January 3, 2012
    Assignees: TDY Industries, Inc., Baker Hughes Incorporated
    Inventors: Jimmy W. Eason, Prakash K. Mirchandani, James J. Oakes, James C. Westhoff, Gabriel B. Collins, John H. Stevens, Steven G. Caldwell, Alfred J. Mosco
  • Patent number: 8083012
    Abstract: Diamond bonded constructions comprise a polycrystalline diamond body having a matrix phase of bonded-together diamond grains and a plurality of interstitial regions between the diamond grains including a catalyst material used to form the diamond body disposed within the interstitial regions. A sintered thermally stable diamond element is disposed within and bonded to the diamond body, and is configured and positioned to form part of a working surface. The thermally stable diamond element is bonded to the polycrystalline diamond body, and a substrate is bonded to the polycrystalline diamond body. The thermally stable diamond element comprises a plurality of bonded-together diamond grains and interstitial regions, wherein the interstitial regions are substantially free of a catalyst material used to make or sinter the thermally stable diamond element. A barrier material may be disposed over or infiltrated into one or more surfaces of the thermally stable diamond element.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: December 27, 2011
    Assignee: Smith International, Inc.
    Inventors: Georgiy Voronin, J. Daniel Belnap, Feng Yu, Benjamin Randall
  • Patent number: 8079429
    Abstract: Geometric compensation techniques are used to improve the accuracy by which features may be located on drill bits formed using particle compaction and sintering processes. In some embodiments, a positional error to be exhibited by at least one feature in a less than fully sintered bit body upon fully sintering the bit body is predicted and the at least one feature is formed on the less than fully sintered bit body at a location at least partially determined by the predicted positional error. In other embodiments, bit bodies of earth-boring rotary drill bits are designed to include a design drilling profile and a less than fully sintered bit body is formed including a drilling profile having a shape differing from a shape of the design drilling profile. Less than fully sintered bit bodies of earth-boring rotary drill bits are formed using such methods.
    Type: Grant
    Filed: June 4, 2008
    Date of Patent: December 20, 2011
    Assignee: Baker Hughes Incorporated
    Inventors: Redd H. Smith, John H. Stevens, James L. Duggan, Nicholas J. Lyons, Jimmy W. Eason, Oliver Matthews, III
  • Patent number: 8079428
    Abstract: Hardfacing materials include particles of polycrystalline diamond (PCD) material embedded within a matrix material. The PCD particles comprise a plurality of inter-bonded diamond grains. Material compositions and structures used to apply a hardfacing material to an earth-boring tool (e.g., welding rods) include PCD particles. Earth-boring tools include a hardfacing material comprising PCD particles embedded within a matrix material on at least a portion of a surface of a body of the tools. Methods of forming a hardfacing material include subjecting diamond grains to elevated temperatures and pressures to form diamond-to-diamond bonds between the diamond grains and form a PCD material. The PCD material is broken down to form PCD particles that include a plurality of inter-bonded diamond grains. Methods of hardfacing tools include bonding PCD particles to surfaces of the tools using a metal matrix material.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: December 20, 2011
    Assignee: Baker Hughes Incorporated
    Inventors: Nicholas J. Lyons, Danny E. Scott
  • Patent number: 8074748
    Abstract: Embodiments of the invention relate to thermally-stable polycrystalline diamond (“PCD”) elements, polycrystalline diamond compacts (“PDCs”), and methods of fabricating such PCD elements and PDCs. In an embodiment, a PCD element includes a PCD body comprising bonded diamond grains defining a plurality of interstitial regions. The PCD body includes a first volume having a first portion of the interstitial regions and a second volume having a second portion of the interstitial regions. The PCD body further includes an infiltrant that is disposed in the first portion of the interstitial regions and the second portion of the interstitial regions is substantially free of the infiltrant. The infiltrant comprises a glass, a glass-ceramic, silicone, a thermal decomposition reaction product of silicone, a ceramic having a negative coefficient of thermal expansion, or combinations thereof.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: December 13, 2011
    Assignee: US Synthetic Corporation
    Inventors: David P. Miess, Craig H. Cooley
  • Patent number: 8074750
    Abstract: Earth-boring tools for drilling subterranean formations include a particle-matrix composite material comprising a plurality of silicon carbide particles dispersed throughout a matrix material, such as, for example, an aluminum or aluminum-based alloy. In some embodiments, the silicon carbide particles comprise an ABC-SiC material. Methods of manufacturing such tools include providing a plurality of silicon carbide particles within a matrix material. Optionally, the silicon carbide particles may comprise ABC-SiC material, and the ABC-SiC material may be toughened to increase a fracture toughness exhibited by the ABC-SiC material. In some methods, at least one of an infiltration process and a powder compaction and consolidation process may be employed.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: December 13, 2011
    Assignee: Baker Hughes Incorporated
    Inventors: Heeman Choe, John H. Stevens, James L. Overstreet, Jimmy W. Eason, James C. Westhoff
  • Patent number: 8069936
    Abstract: Earth-boring tools and components thereof include a particle-matrix composite material having encapsulated diamond particles embedded within a matrix material. Diamonds in the particles comprise less than about 25% by volume of the composite material, the matrix material comprises less than about 50% by volume of the composite material, and encapsulant material surrounding the diamonds at least substantially comprises a remainder of the volume of the composite material. Methods of forming at least a portion of an earth-boring tool include embedding encapsulated diamond particles in a volume of matrix material to form a particle-matrix composite material. The composite material is formed in such a manner as to cause diamonds to comprise less than about 25% of the composite material, the matrix material to comprise less than about 50% of the composite material, and encapsulant material surrounding the diamonds to at least substantially comprise a remainder of the composite material.
    Type: Grant
    Filed: November 20, 2008
    Date of Patent: December 6, 2011
    Assignee: Baker Hughes Incorporated
    Inventors: Danny E. Scott, Wesley D. Fuller
  • Patent number: 8069935
    Abstract: According to various aspects of the present invention, a superabrasive element includes a plurality of superabrasive grains (e.g., as diamond grains and/or cubic boron nitride grains). The superabrasive element further includes a binder constituent that bonds at least a portion of the superabrasive grains together. The binder constituent includes predominantly one or more inorganic-compound phases, such as boron or silicon compounds. Applications utilizing such superabrasive elements and methods of fabricating such superabrasive elements are also disclosed.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: December 6, 2011
    Assignee: US Synthetic Corporation
    Inventors: David P. Miess, Jiang Qian
  • Patent number: 8056650
    Abstract: Thermally stable ultra-hard compact constructions of this invention comprise an ultra-hard material body that includes a thermally stable region positioned adjacent a surface of the body. The thermally stable region is formed from consolidated materials that are thermally stable at temperatures greater than about 750° C. The thermally stable region can occupy a partial portion of or the entire ultra-hard material body. The ultra-hard material body can comprise a composite of separate ultra-hard material elements that each form different regions of the body, at least one of the regions being thermally stable. The ultra-hard material body is attached to a desired substrate, an intermediate material is interposed between the body and the substrate, and the intermediate material joins the substrate and body together by high pressure/high temperature process.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: November 15, 2011
    Assignee: Smith International, Inc.
    Inventors: Stewart N. Middlemiss, J. Daniel Belnap, Nephi Mourik, Thomas W. Oldham, Anthony Griffo
  • Publication number: 20110266068
    Abstract: Methods of fabricating earth-boring tools include forming an outer portion of an earth-boring tool from a powder mixture comprising hard particles and matrix particles comprising a metal matrix material, disposing a molten material at least partially within the outer portion of the earth-boring tool, and forming the molten material into another portion of the earth-boring tool. Methods of fabricating a bit body of an earth-boring rotary drill bit include forming an outer portion comprising a plurality of hard particles and a plurality of matrix particles comprising a metal matrix material and casting a molten material at least partially within the outer portion of the bit body to form another portion of the bit body. Earth-boring tools include a body for engaging a subterranean borehole having an outer portion and an inner portion comprising at least one material solidified within a cavity formed within the outer portion.
    Type: Application
    Filed: April 14, 2011
    Publication date: November 3, 2011
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Jimmy W. Eason, Michael R. Wells
  • Publication number: 20110259646
    Abstract: In one aspect of the present invention a disc cutter for an earth boring system includes an axle and a sintered polycrystalline ceramic disc disposed about and forming a continuous perimeter around the axle. The disc cutter may be attached to a drill bit comprising a body, working face and plurality of blades. Another aspect of the present invention comprises a method of forming a disc cutter including providing a can of a generally cylindrical shape with a central axis, positioning a column of disposable material, carbide, and crystalline grains in such a manner so when put under high temperature and high pressure a compact in the shape of a disc cutter may be formed and a column from the center axis may be removed. Another method for forming a disc cutter comprises forming a plurality of compacts and bonding the compacts together in a generally toroidal shape.
    Type: Application
    Filed: April 23, 2010
    Publication date: October 27, 2011
    Inventors: David R. Hall, Ronald B. Crockett, Neil Cannon, Scott Richens
  • Publication number: 20110259647
    Abstract: Methods, systems and compositions for manufacturing downhole tools and downhole tool parts for drilling subterranean material are disclosed. A model having an external peripheral shape of a downhole tool or tool part is fabricated. Mold material is applied to the external periphery of the model. The mold material is permitted to harden to form a mold about the model. The model is eliminated and a composite matrix material is cast within the mold to form a finished downhole tool or tool part.
    Type: Application
    Filed: June 10, 2011
    Publication date: October 27, 2011
    Applicant: Baker Hughes Incorporated
    Inventors: John H. Stevens, Jimmy W. Eason
  • Patent number: 8028771
    Abstract: Polycrystalline diamond constructions include a diamond body comprising a matrix phase of bonded together diamond crystals formed at high pressure/high temperature conditions with a catalyst material. The sintered body is treated to remove the catalyst material disposed within interstitial regions, rendering it substantially free of the catalyst material used to initially sinter the body. Accelerating techniques can be used to remove the catalyst material. The body includes an infiltrant material disposed within interstitial regions in a first region of the construction. The body includes a second region adjacent the working surface and that is substantially free of the infiltrant material. The infiltrant material can be a Group VIII material not used to initially sinter the diamond body. A metallic substrate is attached to the diamond body, and can be the same or different from a substrate used as a source of the catalyst material used to initially sinter the diamond body.
    Type: Grant
    Filed: February 5, 2008
    Date of Patent: October 4, 2011
    Assignee: Smith International, Inc.
    Inventors: Madapusi K. Keshavan, Anthony Griffo, Yuelin Shen, Youhe Zhang
  • Patent number: 8025112
    Abstract: An article of manufacture includes a cemented carbide piece and a joining phase that binds the cemented carbide piece into the article. The joining phase includes inorganic particles and a matrix material. The matrix material is a metal and a metallic alloy. The melting temperature of the inorganic particles is higher than the melting temperature of the matrix material. A method includes infiltrating the space between the inorganic particles and the cemented carbide piece with a molten metal or metal alloy followed by solidification of the metal or metal alloy to form an article of manufacture.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: September 27, 2011
    Assignee: TDY Industries, Inc.
    Inventors: Prakash K. Mirchandani, Morris E. Chandler, Michale E. Waller, Heath C. Coleman
  • Patent number: 8016056
    Abstract: A cutting tool that includes at least one tungsten carbide cutting element disposed on a support, wherein at least one tungsten carbide cutting element has at least one localized region having a material property different from the remaining region, wherein the at least one localized region having a different material property is prepared by a method including determining at least one localized region needing a variation in a material property different from the remaining region; coating a portion of a surface of the at least one tungsten carbide cutting element with a refractory material such that a surface corresponding to the localized region is left uncoated; and treating the coated cutting element with a selected agent to diffuse the selected agent into the localized region is disclosed.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: September 13, 2011
    Assignee: Sandvik Intellectual Property AB
    Inventors: Ramamurthy K. Viswanadham, Dah-Ben Liang, Gregory T. Lockwood
  • Patent number: 8002052
    Abstract: A rotary drill bit includes a bit body substantially formed of a particle-matrix composite material having an exterior surface and an abrasive wear-resistant material disposed on at least a portion of the exterior surface of the bit body. Methods for applying an abrasive wear-resistant material to a surface of a drill bit are also provided.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: August 23, 2011
    Assignee: Baker Hughes Incorporated
    Inventors: John H. Stevens, James Leslie Overstreet, Kenneth E. Gilmore, Jeremy K. Morgan
  • Patent number: 8002053
    Abstract: Embodiments of a system, method, and apparatus for predicting and reducing tracking by roller cone bits by adjusting compact spacing are disclosed. Different pitches between adjacent compacts or teeth provide a cone row that is substantially less likely to track. A given row on a cone may include compacts that are arrayed at a single pitch in a contiguous group for approximately half of the row. The remaining approximately half of the row includes alternating pitches. This configuration enables anti-tracking behavior without very wide spaces and consequent breakage and wear seen in prior art anti-tracking pitch schemes.
    Type: Grant
    Filed: August 14, 2008
    Date of Patent: August 23, 2011
    Assignee: Baker Hughes Incorporated
    Inventors: Greg Ricks, Leroy William Ledgerwood, III
  • Patent number: 7997358
    Abstract: A bit body formed of a mixture of matrix material and superabrasive powder and including pockets lined with superabrasive-free matrix material, and a method for forming the same, are provided. The pockets are shaped to receive cutting elements therein. The superabrasive-free matrix material enhances braze strength when a cutting element is brazed to surfaces of the pocket. The method for forming the drill bit body includes providing a mold and displacements. The displacements are coated with a mixture of superabrasive free matrix-material and an organic binder. The mold is packed with a mixture of matrix material and superabrasive powder and the arrangement heated to form a solid drill bit body. When the solid bit body is removed from the mold, pockets are formed by the displacements in the bit body and are lined with the layer of superabrasive-free matrix material. The superabrasive material may be diamond, polycrystalline cubic boron nitride, SiC or TiB2 in exemplary embodiments.
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: August 16, 2011
    Assignee: Smith International, Inc.
    Inventors: Saul N Izaguirre, Thomas W. Oldham, Kumar T Kembaiyan, Gary Chunn, Anthony Griffo, Robert Denton, Brian A White
  • Patent number: 7980333
    Abstract: An earth boring drill bit comprising a milled cutter having rows of hardfacing guides on the cutter. Hardfacing is applied between adjacent hardfacing guides to form a hardfacing web that serves as a cutting element. The hardfacing web defines an interface between the hardfacing web and the hardfacing guide. The hardfacing web may extend past the crest of the hardfacing guides or end along the hardfacing guides flanks. Projecting hardfacing is provided on the interface to form trimmers.
    Type: Grant
    Filed: April 7, 2009
    Date of Patent: July 19, 2011
    Assignee: Baker Hughes Incorporated
    Inventors: Robert J. Buske, James L. Overstreet
  • Publication number: 20110168452
    Abstract: An earth-boring bit has rotatable cones with rows of carbide elements installed thereon. A nose is symmetrically arranged on a cone axis of one of the cones. The nose has a central core that protrudes outward. A base joins supporting metal of the cone. A free end is opposite the base. Teeth are formed on the cone between the base and the free end, the teeth extending radially outward. A hard facing layer is located on the teeth. Intermediate hardfacings extend outward from the core between each of the teeth. The intermediate hardfacings may be lugs and preferably extend the same distance from the core as the teeth.
    Type: Application
    Filed: February 18, 2011
    Publication date: July 14, 2011
    Applicant: Baker Hughes Incorporated
    Inventors: Robert J. Pharis, James L. Overstreet, Clark R. Turner, Floyd C. Felderhoff, Kenneth E. Gilmore, Caleb A. Rickabaugh
  • Patent number: 7954569
    Abstract: The present invention relates to compositions and methods for forming a bit body for an earth-boring bit. The bit body may comprise hard particles, wherein the hard particles comprise at least one of carbide, nitride, boride, and oxide and solid solutions thereof, and a binder binding together the hard particles. The binder may comprise at least one metal selected from cobalt, nickel, and iron, and, optionally, at least one melting point reducing constituent selected from a transition metal carbide in the range of 30 to 60 weight percent, boron up to 10 weight percent, silicon up to 20 weight percent, chromium up to 20 weight percent, and manganese up to 25 weight percent, wherein the weight percentages are based on the total weight of the binder.
    Type: Grant
    Filed: April 28, 2005
    Date of Patent: June 7, 2011
    Assignees: TDY Industries, Inc., Baker Hughes Incorporated
    Inventors: Prakash K. Mirchandani, Jimmy W. Eason, James J. Oakes, James C. Westhoff, Gabriel B. Collins, John H. Stevens, Steven G. Caldwell, Alfred J. Mosco
  • Patent number: 7951455
    Abstract: A method for manufacturing an ultrahard compact includes assembling a mass of ultrahard material with a mass of substrate material such that the mass of ultrahard material extends radially outward a greater extent than the substrate material to compensate for a difference in the radial shrinkage of the ultrahard material compared to the substrate material during a sintering process. The method may further includes subjecting the assembled compact to a high pressure high temperature process mat results in the forming of an ultrahard compact including an ultrahard layer integrally bonded with a substrate.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: May 31, 2011
    Assignee: Smith International, Inc.
    Inventors: Christopher H Weis, Ronald K Eyre, Stewart N Middlemiss, David Iverson
  • Patent number: 7950476
    Abstract: A rolling cone drill bit includes a cutter element having a cutting portion with a chisel crest and a pilot portion extending beyond the chisel crest. The pilot portion includes a cutting surface that may be generally conical, or form a second chisel crest. The cutting tip of the pilot portion is supported by buttress portions which emerge from and extend beyond the flanks of the chisel crest to provide additional strength and support for the material of the pilot portion that extends beyond the height of the chisel crest.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: May 31, 2011
    Assignee: Smith International, Inc.
    Inventors: Scott D. McDonough, Amardeep Singh
  • Patent number: 7913779
    Abstract: Rotary drill bits for drilling subterranean formations include a bit body and at least one cutting structure disposed on a face thereof. The bit body includes a crown region comprising a particle-matrix composite material that includes a plurality of boron carbide particles dispersed throughout an aluminum or aluminum-based alloy matrix material. In some embodiments, the matrix material may include a continuous solid solution phase and a discontinuous precipitate phase. Methods of manufacturing rotary drill bits for drilling subterranean formations include infiltrating a plurality of boron carbide particles with a molten aluminum or aluminum-based material. In additional methods, a green powder component is provided that includes a plurality of particles each comprising boron carbide and a plurality of particles each comprising aluminum or an aluminum-based alloy material. The green powder component is at least partially sintered to provide a bit body, and a shank is attached to the bit body.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: March 29, 2011
    Assignee: Baker Hughes Incorporated
    Inventors: Heeman Choe, John H. Stevens, James C. Westhoff, Jimmy W. Eason, James L. Overstreet
  • Patent number: 7905301
    Abstract: An earth boring bit formed from an alloy comprising a low carbon content and high molybdenum content is disclosed herein. The molybdenum content is greater than about 0.8% to about 1.15% by weight of the alloy. The carbon content may range up to about 0.16% by weight of the alloy. The alloy may further comprise alloy further comprises manganese, phosphorus, sulfur, silicon, nickel, chromium, copper, aluminum, vanadium, and calcium; with the balance being iron. The alloy experiences a relatively flattened hardenability curve and low martinsite formation.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: March 15, 2011
    Assignee: Baker Hughes Incorporated
    Inventors: Carmel Z. El Hakam, Eric C. Sullivan, John F. Bradford, III, Don Q. Nguyen
  • Publication number: 20110042145
    Abstract: A downhole tool having a layer of wear resistant material applied thereon utilizing a thermal spray process and methods of manufacturing such downhole tools.
    Type: Application
    Filed: November 4, 2010
    Publication date: February 24, 2011
    Applicant: SMITH INTERNATIONAL, INC.
    Inventors: Sike Xia, Zhou Yong
  • Patent number: 7891443
    Abstract: A rotary cone earth boring bit has at least one bit leg with a cone retaining ball passage that intersects an outer surface of the bit leg and is closed by a ball plug. An upwardly curved lower hardfacing bead is on the outer surface of the bit leg at least partially below the ball plug. A downwardly curved upper hardfacing bead is on the outer surface of the bit leg at least partially above the ball plug. The upper hardfacing bead has leading and trailing ends that join the lower hardfacing bead. The upper and lower hardfacing beads define a generally elliptical perimeter surround the ball plug. At least one transverse bead is above the upper hardfacing bead and leads generally upwardly and circumferentially from a leading edge of the bit leg to a trailing edge of the bit leg.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: February 22, 2011
    Assignee: Baker Hughes Incorporated
    Inventors: Alan J. Massey, David K. ‘Keith’ Luce, Keith L. Nehring
  • Publication number: 20110036639
    Abstract: An earth boring drill bit that includes a cutting cone with a cutting disk. Compacts are inserted within the disk having a chisel shaped end set flush with the cutting disk periphery. The compact crests and cutting disk periphery form a generally seamless cutting surface. The cutting cone can further include cutting teeth thereon also having flush mounted compacts. The compacts can be made from a material such as cemented carbide, hardfacing, tungsten, tungsten alloys, tungsten carbide and the cutter made from steel.
    Type: Application
    Filed: August 13, 2009
    Publication date: February 17, 2011
    Applicant: Baker Hughes Incorporated
    Inventors: Robert J. Buske, James L. Overstreet, Thomas M. Stefanik, Shyam Anandampillai, Robert D. Bradshaw
  • Patent number: 7878274
    Abstract: An earth boring drill bit comprising a milled cutter having rows of teeth hardfacing guides on the cutter. Hardfacing is applied between adjacent teeth hardfacing guides to form a cutting element. The hardfacing may extend past the crest of the teeth hardfacing guides or end along the teeth hardfacing guides flanks.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: February 1, 2011
    Assignee: Baker Hughes Incorporated
    Inventors: Robert J. Buske, James L. Overstreet
  • Patent number: 7878275
    Abstract: A drill bit that includes a bit body having a plurality of blades extending radially therefrom, the bit body comprising a first matrix region and a second matrix region, wherein the first matrix region is formed from a moldable matrix material; and at least one cutting element for engaging a formation disposed on at least one of the plurality of blades is disclosed.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: February 1, 2011
    Assignee: Smith International, Inc.
    Inventors: Gregory T. Lockwood, Youhe Zhang, Yuelin Shen
  • Publication number: 20110017517
    Abstract: Cutting elements for use in earth-boring applications include a substrate, a transition layer, and a working layer. The transition layer and the working layer comprise a continuous matrix phase and a discontinuous diamond phase dispersed throughout the matrix phase. The concentration of diamond in the working layer is higher than in the transition layer. Earth-boring tools include at least one such cutting element. Methods of making cutting elements and earth-boring tools include mixing diamond crystals with matrix particles to form a mixture. The mixture is formulated in such a manner as cause the diamond crystals to comprise about 50% or more by volume of the solid matter in the mixture. The mixture is sintered to form a working layer of a cutting element that is at least substantially free of polycrystalline diamond material and that includes the diamond crystals dispersed within a continuous matrix phase formed from the matrix particles.
    Type: Application
    Filed: July 23, 2009
    Publication date: January 27, 2011
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Danny E. Scott, Nicholas J. Lyons
  • Patent number: 7874383
    Abstract: Polycrystalline diamond inserts are disclosed. For example, a polycrystalline diamond insert may comprise a polycrystalline diamond layer affixed to a substrate at an interface. In addition the polycrystalline diamond layer may comprise: an arcuate exterior surface, a first region including a catalyst and a second region from which the catalyst is at least partially removed. Further, the arcuate exterior surface may be defined by a portion of the first region including the catalyst and a portion of the second region from which the catalyst is at least partially removed. In another embodiment, the polycrystalline diamond layer may include a convex exterior surface for contacting a subterranean formation, wherein at least a portion of a catalyst used for forming the polycrystalline diamond layer is removed from a region of the polycrystalline diamond layer. Subterranean drilling tools (e.g., percussive drill bits) including at least one polycrystalline diamond insert are disclosed.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: January 25, 2011
    Assignee: US Synthetic Corporation
    Inventors: Randon S. Cannon, Greg C. Topham, Eric C. Pope
  • Patent number: 7866419
    Abstract: An insert for a drill bit that includes a plurality of encapsulated particles dispersed in a first matrix material, where the encapsulated particles include a coarse particle encapsulated within a shell, and wherein the shell comprises abrasive particles dispersed in a second matrix material is disclosed.
    Type: Grant
    Filed: July 17, 2007
    Date of Patent: January 11, 2011
    Assignee: Smith International, Inc.
    Inventor: Gregory T. Lockwood
  • Patent number: 7866417
    Abstract: An earth boring drill bit comprising a milled cutter having rows of teeth hardfacing guides on the cutter. Hardfacing is applied between adjacent teeth hardfacing guides to form a cutting element. The hardfacing may include an annular body with ridges that outwardly project from the body.
    Type: Grant
    Filed: October 21, 2008
    Date of Patent: January 11, 2011
    Assignee: Baker Hughes Incorporated
    Inventors: Robert J. Buske, James L. Overstreet
  • Publication number: 20110000715
    Abstract: Hardfacing materials include particles of polycrystalline diamond (PCD) material embedded within a matrix material. The PCD particles comprise a plurality of inter-bonded diamond grains. Material compositions and structures used to apply a hardfacing material to an earth-boring tool (e.g., welding rods) include PCD particles. Earth-boring tools include a hardfacing material comprising PCD particles embedded within a matrix material on at least a portion of a surface of a body of the tools. Methods of forming a hardfacing material include subjecting diamond grains to elevated temperatures and pressures to form diamond-to-diamond bonds between the diamond grains and form a PCD material. The PCD material is broken down to form PCD particles that include a plurality of inter-bonded diamond grains. Methods of hardfacing tools include bonding PCD particles to surfaces of the tools using a metal matrix material.
    Type: Application
    Filed: July 2, 2009
    Publication date: January 6, 2011
    Inventors: Nicholas J. Lyons, Danny E. Scott