Abstract: A portable scale is provided that includes a fulcrum, a balance beam pivotally mounted on the fulcrum, the balance beam supporting a load pan on one end and including an elongated portion having a measurement strip extending along the elongated portion of the balance beam. The portable scale includes a dynamic weight movable along the elongated portion of the balance beam. The dynamic weight includes a display unit on the elongated portion of the balance beam for detecting the location of the dynamic weight along the measurement strip, for electrically converting the location to a weight measurement, and for displaying the weight measurement. The portable scale may include luminescent material.
Abstract: A lightweight, portable scale, including a balance beam pivotally positioned on a fulcrum, contained in a tear-drop shaped carrying case. The portable scale has a load pan on one end of the balance beam and a graduated scale, configured to accommodate sliding weight members, extending toward the opposite end of the balance beam. The fulcrum is positioned between the load pan and the graduated scale. To establish equilibrium, the balance beam includes a stationary counter-weight attached on the load pan side of the fulcrum, which balances the empty load pan against the sliding weight members located at a zero position on the graduated scale. The carrying case has a top portion hingedly attached to a bottom portion, which functions as the base of the portable scale and has sidewalls shorter than the fulcrum, preventing interference by the side walls during the weighing process.
Abstract: An electronic scale is provided with two or more load cells in which the first load cell covers a low load range, and each successive cell covers a greater load range than the preceding cell. The cells are connected mechanically in tandem such that a load on the scales is applied to each cell simultaneously. Electrical signals from each load cell when performing a weighing operation are processed by a microcomputer to digitize the signals and to select the signal coming from the first load cell in the tandem connection which is not overloaded. The microprocessor scales the measurement signal and displays the weight on an alphanumeric readout. Memory circuits are included for storing tare weights and for storing unit weights during counting operations. When a number of units in a group is to be counted, the microprocessor divides a measured weight by the unit weight and outputs the count to the alphanumeric readout display.