Abstract: An energy efficient scale using a load cell for weight detection and a power supply for powering the load cell at one or another of three different current levels. The highest current level provides accurate weight indication. The intermediate current level provides only a signal indicating the presence of a package on the scale. The lowest current level is sufficient only for keeping the load cell electrically centered. If a package is placed on the scale while the load cell is receiving current at the intermediate level, then a resulting package detection signal causes the scale to switch to full operating current.
Abstract: A combinatorial weighing system for combinatorially weighing articles by obtaining an optimum combination of weight values produced by a plurality of weighing machines each of which contains a supply of the articles. The system includes a circuit for detecting a malfunction in any of the weighing machines, and a circuit for excluding weighing machines, detected as having malfunctioned, from participation in combinatorial weighing, and for executing combinatorial weighing using weighing machines other than the excluded weighing machine. When the number of excluded weighing machines exceeds a predetermined number, however, the weighing operation is halted. Even if several of the weighing machines malfunction, therefore, operation is allowed to continue, without terminating the overall weighing operation.
Abstract: An automatic method and associated apparatus for weighing material and in particular for determining signature counts in association with a printing press. The system provides for the automatic registration of tare weight and for automatic removal detection and automatic registration of the last weight prior to removal. Also, in one embodiment described herein there is displayed a time signal representative of the time to go with regard to obtaining a desired full complement of good signatures.
Abstract: An apparatus for selecting between a mechanical or electrical mode for controlling the flow of fibers by motor driven feed lift aprons from a plurality of hoppers to a plurality of weigh pans for producing a predetermined blend of fibers. The mechanical mode utilizes a balance arm assembly which can be set to feed a predetermined amount of fibers into a weigh pan. The electrical mode utilizes thumbwheel switches which can be set for regulating the amount of fibers to be fed into each weigh pan. The electrical mode system also utilizes a comparator for comparing a signal representing the actual weight of fibers in the weigh pan that is produced by a load cell with a signal representing the desired weight of fibers produced by the thumbwheel switches and generates a control signal responsive thereto. The control signal is used for operating a motor driven feed lift apron associated with the hopper.
Type:
Grant
Filed:
December 15, 1982
Date of Patent:
June 25, 1985
Assignee:
Frontier Electronics, Inc.
Inventors:
John M. Cochran, Jr., Ronald N. Cleveland