Stepper Patents (Class 180/8.1)
  • Patent number: 8014897
    Abstract: A system and method for operating robots in a robot competition. One embodiment of the system may include operator interfaces, where each operator interface is operable to control movement of a respective robot. A respective operator interface may be in communication with an associated operator radio, where each radio may have a low power RF output signal. A robot controller may be coupled to each robot in the robot competition. A robot radio may be coupled to a respective robot and in communication with a respective robot controller and operator radio. The robot radios may have a low power RF output signal while communicating with the respective operator radios. Alternatively, the radios may be short range radios, where a distance of communication may be a maximum of approximately 500 feet.
    Type: Grant
    Filed: January 4, 2008
    Date of Patent: September 6, 2011
    Assignee: Innovation First, Inc.
    Inventors: David A. Norman, Robert H. Mimlitch, III, Paul S. Adams
  • Publication number: 20110186362
    Abstract: The invention relates to a foot and a humanoid robot having the foot. The invention is of particular utility in the production of humanoid robots coming as close as possible to the human morphology. According to the invention, the foot includes: a sole, toes, a motorized connection, independent of the ankle, in rotation between the sole and the toes, the toes being able to move on an angular travel about an axis of the connection, an actuator allowing the connection to be motorized, and means for controlling the actuator in a standalone manner.
    Type: Application
    Filed: June 5, 2009
    Publication date: August 4, 2011
    Applicant: BIA
    Inventors: Samer Alfayad, Fathi Ben Ouezdou, Faycal Namoun
  • Patent number: 7984775
    Abstract: A legged robot that can ensure a large step length while keeping the height of a body trunk at a low position without increasing a moment that is generated due to the gravitational force acting on the trunk and acting on roll joints of legs when standing on one leg is realized. In the legged robot, a pair of legs is connected so as to be able to rotate around a pitch axis (Y-axis) at lateral surfaces of a trunk. Thereby, it is possible to make the height H1 high while keeping the height of the trunk low. It is possible to ensure a large step length while keeping the height of the trunk at a low position. Legs have a structure in which roll joints are positioned below a bottom surface. Thereby, the length L1 in the pitch axis direction between the rotation axis C1 of these joints and the center of mass G of the trunk is limited. The moment acting on the roll joints of the grounding leg when standing on one leg is not increased.
    Type: Grant
    Filed: February 20, 2007
    Date of Patent: July 26, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Keisuke Suga, Masaaki Yamaoka
  • Patent number: 7980337
    Abstract: The present invention provides a device for safely and conveniently conveying an object on a slope. The safety feature includes a fail-safe one-way brake comprising a ratchet wheel, a pawl and a biasing means. In one embodiment, the device is foldable; in another embodiment, the device is integrated with a suitcase; in yet another embodiment, the device is motorized.
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: July 19, 2011
    Assignee: Nanyang Polytechnic
    Inventors: Kannappan@Suresh A/L Lynkaran, Chin Sai Wong
  • Patent number: 7971664
    Abstract: The method and apparatus consist of a robot body having at least two, but preferably six appendages. The appendages are organized into appendage groups of one to six appendages. The appendages are linked mechanically into groups of two or more and each group is actuated using a single drive actuator. A selective engagement mechanism is used to selectively engaged and disengage one or more appendages at a time in a way that allows for at least one appendage and at most all but one appendage per group to be engaged to a group's drive actuator. When the appendage is disengaged it is preferably locked in place to resist a reasonable force applied to them externally, such as the force equivalent to the weight of the robot.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: July 5, 2011
    Assignee: Bossa Nova Robotics IP, Inc.
    Inventor: Sarjoun Skaff
  • Patent number: 7963351
    Abstract: A method for forming a robotic vehicle. The method may involve forming a body and arranging a plurality of movable legs to project from the body for propelling the body over a surface. An actuator may be carried by the body to selectively engage and disengage different ones of the movable legs to cause a motion of the body, and thus the robotic vehicle, to travel over the surface.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: June 21, 2011
    Assignee: The Boeing Company
    Inventor: James J. Troy
  • Publication number: 20110139030
    Abstract: A large bipedal walking robot that a human can directly board and ride and that may be used as an amusement park ride, and to an amusement park system using the same includes a large bipedal walking robot capable of being boarded and ridden, a boarding vehicle to be coupled to the head or body of the robot, a safety cable and a safety rail that prevent the robot from falling, a safety vehicle that prevents the robot, but not the safety cable, from falling and makes the robot's bipedal walking steadier, connection means enabling the robot to be connected to a roller coaster (tram railway) in order to provide the effect of a flying robot, and a tunnel in which various villain robots are installed to provide an experience of the robot engaging in combat, and safety rails installed and connected in all areas where the robot moves.
    Type: Application
    Filed: February 23, 2011
    Publication date: June 16, 2011
    Inventor: In-Sang KIM
  • Patent number: 7958955
    Abstract: An automotive device for the inspection of internal spaces having ferromagnetic surfaces includes at least two magnetic wheels (3) or caterpillars, or at least two magnetic legs for the advancement of the device along the surfaces to be inspected. According to the invention, the device includes actively powered rotating arms (1) attached to a wheel (3), caterpillar, or leg of the device. Each rotating arm (1) has a length longer than the shortest distance between the point of attachment of the rotating arm to the device and the surface. When the device is in a position, where there is magnetic contact to the surface in two or more points and the device is no longer able to advance due to the strength of the magnetic forces, the rotating arms are brought into non-magnetic contact with the surface in order to create an air gap between the surface and the magnetic wheel and thus reduce the magnetic forces. The device is thereby enabled to overcome the magnetic forces and advance the device along the surface.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: June 14, 2011
    Assignee: Alstom Technology Ltd
    Inventors: Roland Moser, Wolfgang Fischer, Fabien Tache, Roland Yves Siegwart, Francesco Mondada
  • Patent number: 7946364
    Abstract: A legged robot is provided whose trunk link is not prone to wobble in the front-back direction during walking. The legged robot is equipped with a trunk link and a pair of legs. Each leg has a pitch joint capable of rotating the connected links in a plane that intersects with a line extending in a lateral direction of the robot. Rotation centers of the pitch joints are located above a center of gravity of the trunk link. The legged robot walks mainly by swinging the legs backward and forward around such rotation centers. Hence, the trunk link wobbles mainly in the front-back direction around the rotation centers as the robot walks. Because the center of gravity of the trunk link is located below the rotation centers, the gravitational force acting on the trunk link acts in a direction to suppress swinging of the trunk link during walking. Due to this, the trunk link of the legged robot is not prone to wobble in the front-back direction during walking.
    Type: Grant
    Filed: July 27, 2007
    Date of Patent: May 24, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Keisuke Suga, Akira Ogawa
  • Patent number: 7942221
    Abstract: A walking bi-pedal robot includes a right leg and a left leg, each coupled with a pelvis via hip lateral angular joints and hip antero-posterior angular joints. Each hip lateral angular joint enables lateral angular motion and each hip antero-posterior angular joint enables antero-posterior angular motion of the respective leg. Right and left feet couple at the distal end of the respective leg via respective ankle lateral angular joints and right and left cables. One end of each cable is coupled with the exterior side of the respective foot. A pelvis motor couples with the right leg, the left leg, the other end of each cable. The pelvis motor generates lateral angular displacement of each leg about the respective hip lateral angular joint and pulls one of the cables according to the direction of the lateral angular displacement. Leg motors generate antero-posterior angular displacement of the respective leg.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: May 17, 2011
    Assignee: Wowwee Group Limited
    Inventor: Mark Woodruff Tilden
  • Patent number: 7934575
    Abstract: A method for the locomotion of devices on opposite sides of a surface, one or more of which are mobile robots. Devices on opposing sides of the surface are coupled by an attractive force, which helps generate enough friction between said devices and the surface to allow devices to move across the surface.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: May 3, 2011
    Inventors: Markus Waibel, Peter Duerr
  • Patent number: 7926598
    Abstract: A mobile robot includes a robot chassis having a forward end, a rearward end and a center of gravity. The robot includes a driven support surface to propel the robot and first articulated arm rotatable about an axis located rearward of the center of gravity of the robot chassis. The arm is pivotable to trail the robot, rotate in a first direction to raise the rearward end of the robot chassis while the driven support surface propels the chassis forward in surmounting an obstacle, and to rotate in a second opposite direction to extend forward beyond the center of gravity of the robot chassis to raise the forward end of the robot chassis and invert the robot endwise.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: April 19, 2011
    Assignee: iRobot Corporation
    Inventor: Pavlo E. Rudakevych
  • Patent number: 7905303
    Abstract: Disclosed is a legged locomotion robot which is structurally simple and is provided with a tiptoe portion in a foot at a low cost. The legged locomotion robot includes an upper body; two locomotive legs connected to the upper body through a joint; and a locomotive foot connected to a tip end of the leg through a joint; wherein the foot is provided with a foot sole serving as a ground contacting portion of the foot, a curved portion is formed at a predefined distance from a tip end of the foot sole, crossing the foot sole laterally, and the curved portion is configured to be thinner than a tiptoe portion of the foot sole.
    Type: Grant
    Filed: January 11, 2010
    Date of Patent: March 15, 2011
    Assignee: Honda Motor Co., Ltd.
    Inventors: Kenji Takenaka, Takumi Shibata
  • Patent number: 7904200
    Abstract: A leg type mobile robot, in which a downsizing and wait-saving of floor reaction force detector to be installed on the foot is enabled. The center Pb of the force sensor is disposed on the position Pa where the distance to the remotest position of ground area provided on the bottom of each plate spring part S1 to S4 is minimum in the standing-still state of the robot R, and the distance L1, L2, L3, and L4 to the remotest point of the ground area of each plate spring part S1, S2, S3, and S4 is equal. The center Pc of the ankle joint is offset in a rearward direction with respect to the position Pa in a plane view.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: March 8, 2011
    Assignee: Honda Motor Co., Ltd.
    Inventors: Toru Takenaka, Keizo Matsumoto, Hiroshi Gomi, Kazushi Hamaya
  • Publication number: 20110048815
    Abstract: A multi-legged walking device includes a crankshaft, a plurality of linkage bar mechanisms, a support member, and a driving device. The crankshaft includes a plurality of main journals and crankpin journals. The plurality of linkage bar mechanisms is spaced from and substantially parallel to each other. The linkage bar mechanisms include a plurality of frames. Each frame is rotatably connected to one of the plurality of main journals. Each linkage bar mechanism includes a connecting bar, a first rocker, a second rocker, and a leg. Two ends of the connecting bar are rotatably connected to one of the crankpin journals and the leg. Two ends of the first rocker are rotatably connected to one of the plurality of frames and the leg. Two ends of the second rocker are rotatably connected to one of the plurality of frames and the connecting bar. The support member is fixed to the frames.
    Type: Application
    Filed: June 8, 2010
    Publication date: March 3, 2011
    Applicants: HONG FU JIN PRECISION INDUSTRY (ShenZhen)CO., LTD., HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: BAO-QIN XU
  • Patent number: 7896112
    Abstract: A supplementary support structure, which supports the body of a robot (1), comprises a contact component (7) which is disposed in a part near a joint (2c) on the distal end, having a hand (3) disposed thereon, of an arm (2) of the robot (1) so as to come into contact with a surface on which the robot (1) is supported, such as a floor surface, and a member which lies between the part having the contact component (7) disposed therein and the proximal end of the arm (2). Thus, the supplementary support structure can avoid an increase in the weight of the hand resulting from the support structure, thus eliminate an extra load on a driving system for the hand or the arm, and thus achieve the simplification and size reduction of the driving system. Moreover, the support structure can increase the degree of freedom of the shape or functional design of the hand and thus improve the functioning of the robot.
    Type: Grant
    Filed: May 7, 2003
    Date of Patent: March 1, 2011
    Assignee: Kawada Industries, Inc.
    Inventors: Takakatsu Isozumi, Masakazu Ishizaki, Tadaaki Osawa, Kazuhiko Akachi, Kenji Kaneko, Fumio Kanehiro, Kiyoshi Fujiwara
  • Patent number: 7878276
    Abstract: An ambulatory vehicle having legs and configured for transporting a load is disclosed. The ambulatory vehicle includes a load that is able to shift the center of gravity of the ambulatory vehicle along a transverse axis and a longitudinal axis of a beam assembly. Additionally, leg assemblies of the ambulatory vehicle are configured to exchange places along the length of the beam assembly. Further, the vehicle is able to perform a number of gaits including a slow stable gait and faster dynamic gaits comprising striding, trotting, and bounding. The ambulatory vehicle is able to navigate rough terrain and steep slopes and navigate submerged.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: February 1, 2011
    Inventor: H. Phillip Limbacher, Jr.
  • Patent number: 7837201
    Abstract: The present invention provides an assistant apparatus for surmounting a barrier, which comprises a carrier body, an assistant mechanism, and a sensing/driving apparatus. The assistant mechanism, disposed at a side of the carrier body, having an assistant block disposed at the end thereof, functions to place the assistant block on the ground between the carrier body and the barrier so that the carrier body is capable of surmounting the barrier through the assistance of the assistant block. The sensing/driving apparatus, coupled to the assistant mechanism, functions to drive the assistant mechanism to generate the adjusting movement according to whether the barrier is detected or not. By means of the design of the present invention, the assistant block is adopted to reduce the height surmounted by the carrier each time so that the carrier is capable of surmounting the barrier section by section.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: November 23, 2010
    Assignee: National Chiao Tung University
    Inventors: Pi-Ying Cheng, Kian-Poh Wong
  • Patent number: 7819209
    Abstract: A guided transport unit and methods of guiding the transport unit for moving a superstructure in precise angular movements over a surface are disclosed. The guided transport unit comprises a skid pad, a vertical displacing member engaged with the skid pad, a base operatively associated with the vertical displacing member, and a directional actuator. The base includes a planar element for engaging the surface over which the superstructure is transported, and a carrier for moving the vertical displacing member and skid pad relative to the surface. The directional actuator controls and secures the relationship among the vertical displacing member, the base, and the skid pad for positioning the base in a predetermined direction to engage the surface, setting the carrier to move each skid pad in a predetermined direction across the planar element of the base, and repositioning the base in another direction for movement of the guided transport unit.
    Type: Grant
    Filed: May 31, 2008
    Date of Patent: October 26, 2010
    Assignee: Complete Production Services
    Inventor: William A. Bezner
  • Patent number: 7806207
    Abstract: A method for transporting and relocating heavy equipment using a fluid to lift heavy equipment with a lift assembly with a rotatable motion gear assembly. The method can include disengaging a rod one of four walking assemblies secured to the lift assembly and extending a push pull travelling system to move equipment in a first direction using roller treads. The method can include raising one of the four walking assemblies with the lift assembly and pivoting one walking assembly in an opposite direction. The method can include retracting the push pull travelling system and rotating the walking assembly to orient in a second direction.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: October 5, 2010
    Assignee: Loadmaster Engineering, Inc.
    Inventors: R. Michael Barnes, Robert R. Cuddie, Richard E. Robey
  • Patent number: 7806208
    Abstract: A method for controlling movement of an intelligent wheel over a discontinuity in a travel surface. The intelligent wheel has a rotational hub and support disc portion that carries a series of arcuately spaced extendable, weight bearing radial spoke mechanisms that can be controllably extended and retracted in response to the anticipated terrain surface over which the wheel is to travel. The hub of the intelligent wheel carries a microcontroller for a set of obstacle proximity sensors, force and position sensors and an appropriate electrical power supply for operation of spokes and control components.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: October 5, 2010
    Assignee: Gamma Two, Inc.
    Inventors: Louise F. Gunderson, Christian Brown, James P. Gunderson
  • Patent number: 7801643
    Abstract: A legged mobile robot and a control program for the robot cancel a spin force, which is generated by motions of a lower body (242), a leg (2) or the like, by a twisting motion of an upper body (241) relative to the lower body (242) and a swinging motion of an arm (80).
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: September 21, 2010
    Assignee: Honda Motor Co., Ltd.
    Inventors: Toru Takenaka, Susumu Miyazaki, Masakazu Kawai, Masanori Takeda
  • Patent number: 7775305
    Abstract: The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: August 17, 2010
    Assignee: Sandia Corporation
    Inventor: Gary J. Fischer
  • Patent number: 7769488
    Abstract: A reconfigurable structure includes a plurality of selectively extensible and retractable limbs, at least one node pivotably receiving respective ends of at least two limbs, and an actuator associated with each limb for extending and retracting the limb. The structure may further include an addressable module associated with each actuator to control the actuator.
    Type: Grant
    Filed: April 8, 2005
    Date of Patent: August 3, 2010
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Steven A. Curtis
  • Patent number: 7765030
    Abstract: A gait generating system for a mobile robot determines a gait parameter that defines a gait of a mobile robot 1 to be generated by updating a value of a priority parameter of the gait parameter such that it approaches in steps to an original required value from a value of a priority gait parameter of a predetermined base gait parameter until it agrees with the original required value. Each time the value is updated, a search object parameter among non-priority parameters other than the priority parameter is determined in an exploratory manner such that a boundary condition of a gait is satisfied on a dynamic model of the robot 1, and a gait parameter that includes the determined search object parameter and the updated priority parameter is newly determined. The gait of the mobile robot 1 is generated using a gait parameter newly determined when the priority parameter is finally made to agree with the required value, and the dynamic model.
    Type: Grant
    Filed: February 16, 2005
    Date of Patent: July 27, 2010
    Assignee: Honda Motor Co., Ltd.
    Inventors: Toru Takenaka, Takashi Matsumoto, Takahide Yoshiike
  • Patent number: 7762362
    Abstract: A bio-inspired device is provided designed to scale smooth vertical surfaces using anisotropic frictional materials. The device draws its inspiration from geckos and other climbing lizards and employs similar compliance and force control strategies to climb (or hang onto) smooth vertical surfaces including glass, tile and plastic panels. Foremost among the design features embodied in the device are multiple levels of compliance, at length scales ranging from centimeters to micrometers, to allow the device to conform to surfaces and maintain large real areas of contact so that adhesive forces can support it. Structures within the feet ensure even stress distributions over each toe and facilitate engagement and disengagement of the adhesive materials. A force control strategy works in conjunction with the anisotropic adhesive materials to obtain sufficient levels of friction and adhesion for climbing with low attachment and detachment forces.
    Type: Grant
    Filed: April 4, 2007
    Date of Patent: July 27, 2010
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Mark R. Cutkosky, Sangbae Kim
  • Patent number: 7753145
    Abstract: A virtual wheel provides a leg pair as a conveyance mechanism for a land vehicle. The virtual wheel propels the vehicle across a surface using a repetitive motion of the legs that contact the ground as would a wheel, due to their geometry. Vehicle embodiments include at least two-, three-, four- and six-wheeled vehicles, both transverse and in-line. Additionally, the invention provides a bipedal walking robot. One embodiment provides a robotic mule—a payload-carrying vehicle. The invention combines the flexible mobility of bipedal vehicles with the stability and functionality of very large-wheeled vehicles.
    Type: Grant
    Filed: April 15, 2008
    Date of Patent: July 13, 2010
    Assignee: Applied Minds, Inc.
    Inventors: W. Daniel Hillis, Bran Ferren, Luke Khanlian, Mark Setrakian
  • Publication number: 20100170729
    Abstract: An energy efficient biped robotic system with passive-dynamic locomotion includes a body having a frame, an energy recapture mechanism, and a leg. The cyclical movement of the leg during passive-dynamic locomotion is transferred to a load through a mechanical energy storage mechanism, and the resulting oscillatory movement of the load is transferred by the mechanical energy input mechanism to an electric energy generating mechanism. The generated electric energy is transferred to the energy storage device for use by the robotic system.
    Type: Application
    Filed: March 18, 2010
    Publication date: July 8, 2010
    Applicant: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Steven F. Kalik
  • Patent number: 7726422
    Abstract: The embodiments of the present invention disclose a spherical walking robot, the spherical walking robot comprises a spherical coronal; a spherical housing which has a surface groove; a walking and transmission mechanism in the spherical housing; a lift and transmission mechanism; mechanical arms located in the surface groove, and the mechanical arm comprises a little arm and an upper arm connected the little arm by an elbow joint motor. The embodiments of the present invention also disclose a spherical walking robot, the spherical walking robot does not comprise the lift and transmission mechanism, but a fastness mechanism and a rotating mechanism rotatably connected with the fastness mechanism.
    Type: Grant
    Filed: February 15, 2007
    Date of Patent: June 1, 2010
    Assignee: Beijing University of Posts & Telecommunications
    Inventors: Hanxu Sun, Qingxuan Jia
  • Publication number: 20100126785
    Abstract: A legged robot includes: a body; a leg portion; a foot portion; a falling direction detection unit that detects a falling direction of the body; a control unit; and a distance detection unit that detects a distance between a sole of the foot portion and a road surface. The distance detection unit includes at least three distance sensors provided on the sole, and the control unit includes distance sensor selecting means for selecting a distance sensor and gait data correcting means for correcting gait data based on a detection signal from the distance sensor selected by the distance sensor selecting means. The distance sensor selecting means selects three distance sensors among the distance sensors based on a detection result of the falling direction detection unit.
    Type: Application
    Filed: October 22, 2008
    Publication date: May 27, 2010
    Inventor: Hiroshi Shimada
  • Patent number: 7703562
    Abstract: An energy efficient biped robotic system with passive-dynamic locomotion includes a body having a frame. An energy recapture mechanism is suspended within the frame. The energy recapture mechanism includes a load, a mechanical energy storage mechanism that interconnects the load and the frame, and a guide means secured to the load and the frame. A mechanical energy input mechanism interconnects the load with an electric energy generating mechanism. An output means transfers the generated electric energy to an energy storage device. The robot also includes a leg connected to the body portion. The cyclical movement of the leg during passive-dynamic locomotion is transferred to the load through the mechanical energy storage mechanism, and the resulting oscillatory movement of the load is transferred by the mechanical energy input mechanism to the electric energy generating mechanism. The generated electric energy is transferred to the energy storage device for use by the robotic system.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: April 27, 2010
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Steven F. Kalik
  • Patent number: 7681674
    Abstract: A system for positioning a transportable and relocatable equipment having at least four walking assemblies attached to transportable and relocatable equipment each walking assembly has a walking pad, roller tread for rolling the roller bearing surface, a lift assembly connected to the central collar, a rotatable motion gear assembly disposed around the lifting assembly, a motor for actuating the rotatable motion gear assembly, a pivoting collar disposed around the rod operated by a controlling means with a processor, a push pull travelling system for receiving fluid and extending a specified distance causing movement of the equipment in a first direction, and enabling the walking assemblies to raise, reorient, lower, and travel of the transportable and relocatable heavy equipment in a second direction using the treads.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: March 23, 2010
    Assignee: Loadmaster Engineering, Inc.
    Inventors: R. Michael Barnes, Robert R. Cuddie, Richard E. Robey
  • Patent number: 7673710
    Abstract: A traveling robot includes a body frame having a front wheel; a rear wheel which is disposed on a rear side of the front wheel along a traveling direction; a rear frame which supports the rear wheel and is supported by the body frame so as to move vertically; a driving wheel which is disposed between the front wheel and the rear wheel in the traveling direction; a driving frame which supports the driving wheel and is coupled to the body frame by a hinge whose axis is parallel to an axis of the driving wheel; and a linkage member which is coupled to the driving frame to be contacted with or separated from the rear frame as the driving frame is rotated relative to the body frame.
    Type: Grant
    Filed: November 28, 2006
    Date of Patent: March 9, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Youn-baek Lee, Soo-sang Yang, Yeon-taek Oh
  • Patent number: 7669862
    Abstract: A collapsible spider wheel assembly on a towing device enables storage of the device into a standard rectangular space. Once collapsed, the collapsible spider assembly is protected within the body of the towing device. Furthermore, actuation of the folding and unfolding may be accomplished through the usual telescoping of the carrying handle of such a device, such as in a suitcase embodiment. While the spider wheels are in the open position, the carrying apparatus may exert a drive force to climb up stairs and braking force to descend stairs. The unit operates as a normal wheeled carrying apparatus while traversing a horizontal surface.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: March 2, 2010
    Assignee: SterraClimb LLC
    Inventors: Steven Kamara, Michael Yang, David Follette
  • Patent number: 7669861
    Abstract: Twinned circular, parallel arrays of spoke-like second-class levers (10, 12) enclosing a centered cargo cradle for towing 2½ ton stone blocks (26) up a stepped structure of stone courses (34) by rotation of the whole.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: March 2, 2010
    Inventor: Vincent Dean Herreid
  • Patent number: 7617891
    Abstract: A self-propelled mechanical crawler adapted to move on a medium. One example of such a crawler includes a foot, a wave generator adapted to drive a periodic wave in the foot, and a wave transfer mechanism coupled between the wave generator and the foot. The wave transfer mechanism may be adapted to translate the periodic wave produced by the wave generator into a corresponding periodic deformation in the foot so as to generate forces in the medium to propel the crawler.
    Type: Grant
    Filed: October 11, 2005
    Date of Patent: November 17, 2009
    Assignees: Schlumberger Technology Corporation, Massachusetts Institute of Technology
    Inventors: Brian Chan, Julio Guerrero, Anette Hosoi
  • Patent number: 7606634
    Abstract: Ground contact portions 10 are classified into a tree structure such that each of the ground contact portions 10 of a mobile body 1 (mobile robot) equipped with three or more ground contact portions 10 becomes a leaf node and that an intermediate node exists between the leaf node and a root node having all the leaf nodes as its descendant nodes. On each node (a C-th node) having child nodes, the correction amounts of the desired relative heights of the ground contact portions 10 of the C-th node are determined such that the relative relationship among the actual node floor reaction forces of the child nodes of the C-th node approximates the relative relationship among the desired node floor reaction forces of the child nodes of the C-th node, and joints of the mobile body 1 are operated so that a desired relative height obtained by combining the correction amounts is satisfied.
    Type: Grant
    Filed: November 29, 2004
    Date of Patent: October 20, 2009
    Assignee: Honda Motor Co., Ltd.
    Inventors: Toru Takenaka, Takashi Matsumoto, Takahide Yoshiike
  • Patent number: 7604075
    Abstract: A legged ambulatory vehicle for transporting a load from a first location to a second location is disclosed. The ambulatory vehicle comprises a load that is able to shift the center of gravity of the ambulatory vehicle along a length of a beam assembly. Additionally, the leg assemblies of the ambulatory vehicle are configured to exchange places along the length of the beam assembly. Further, the vehicle is able to perform a number of gaits including a slow stable gait and faster dynamic gaits comprising striding, trotting, and bounding. The ambulatory vehicle is able to navigate rough terrain and steep slopes and navigate submerged.
    Type: Grant
    Filed: July 10, 2006
    Date of Patent: October 20, 2009
    Inventor: H. Phillip Limbacher, Jr.
  • Patent number: 7603199
    Abstract: Ground contact portions are categorized in a tree structure manner such that all of the ground contact portions of a mobile body (mobile robot) equipped with three or more ground contact portions become leaf nodes and that an intermediate node exists between the leaf nodes and a root node having all the leaf nodes as its descendant nodes. On each node (a C-th node) having child nodes, the correction amounts of the desired relative heights of the ground contact portions of the C-th node are determined such that at least the difference between an actual posture inclination and a desired posture inclination of a predetermined portion, such as a base body, (posture inclination difference) is approximated to zero, and joints of the mobile body 1 are operated so that a desired relative height obtained by combining the correction amounts is satisfied.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: October 13, 2009
    Assignee: Honda Motor Co., Ltd.
    Inventors: Toru Takenaka, Takashi Matsumoto, Takahide Yoshiike
  • Patent number: 7600592
    Abstract: A variable configuration articulated tracked vehicle comprises a chassis, a pair of right and left drive pulleys, a right and left planetary wheel, a right and left track, a right and left arm mechanism, and a right and left drive motor. The drive pulleys are rotatably attached to the chassis and each pair of drive pulleys is in the same plane. The planetary wheels are movable relative to the chassis such that each planetary wheel is in the same plane as its respective drive pulleys. The tracks extend around the pair of drive pulleys and the planetary wheel on the respective sides. The arm mechanisms connect the respective planetary wheel to the chassis. Each arm mechanism is rotatably attached to the chassis with a cam. The cam defines a motion path of one end of the arm whereby the motion of the planetary wheel provides a path for the planetary wheel such that the track path defined by the respective drive pulleys and the planetary wheel is a constant track length.
    Type: Grant
    Filed: August 4, 2006
    Date of Patent: October 13, 2009
    Assignee: Engineering Services Inc.
    Inventors: Andrew A. Goldenberg, Jun Lin
  • Patent number: 7588105
    Abstract: A virtual wheel provides a leg pair as a conveyance mechanism for a land vehicle. The virtual wheel propels the vehicle across a surface using a repetitive motion of the legs that contact the ground as would a wheel, due to their geometry. Vehicle embodiments include at least two-, three-, four- and six-wheeled vehicles, both transverse and in-line. Additionally, the invention provides a bipedal walking robot. One embodiment provides a robotic mule—a payload-carrying vehicle. The invention combines the flexible mobility of bipedal vehicles with the stability and functionality of very large-wheeled vehicles. Additionally, a bimodal conveyance mechanism readily converts between walking and rolling modes.
    Type: Grant
    Filed: October 3, 2005
    Date of Patent: September 15, 2009
    Assignee: Applied Minds, Inc.
    Inventors: W. Daniel Hillis, Bran Ferren, Luke Khanlian, Mark Setrakian
  • Patent number: 7581605
    Abstract: A quad tracked vehicle may include a forward starboard track arm, an aft starboard track arm, a forward port track arm, and an aft port track arm. Forward track arms may be mounted for rotation about a vehicle body around axis of forward track arm by a forward coaxial transmission and motor, while aft tracks arms may be mounted for rotation about vehicle body around axis of aft extended coaxial transmission by an aft motor. Tracks may be mounted for rotation around track arms and rotate about minor axes. Forward tracks may rotate about forward major axis and aft tracks about aft major axis. Starboard tracks may be rotated by starboard motor, and port tracks by port motor.
    Type: Grant
    Filed: February 22, 2006
    Date of Patent: September 1, 2009
    Assignee: MGA Entertainment, Inc.
    Inventors: Yuval Caspi, Stephen Kong
  • Publication number: 20090166103
    Abstract: Embodiments disclosed herein relate to systems including a limbed vehicle having a plurality of controllably movable limbs (e.g., a limbed machine, limbed robot, etc.), a plurality of spaced posts that the limbed vehicle may travel on using the limbs, and at least one logistical-support unit associated with at least one of the posts and configured to provide logistical support to the limbed vehicle. As non-limiting examples, such disclosed embodiments of systems may be used to service an agriculture field, to enable travel over an environmentally-sensitive area or an area impassable by a conventional wheeled or tracked vehicle, and may be used in many other different applications. Embodiments disclosed herein also relate to limbed vehicles configured to receive logistical support from a logistical-support unit, methods of providing logistical support to such limbed vehicles, post networks, and posts.
    Type: Application
    Filed: December 28, 2007
    Publication date: July 2, 2009
    Applicant: Searete LLC
    Inventors: Jeffrey A. Bowers, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Clarence T. Tegreene, Lowell L. Wood, JR., Victoria Y.H. Wood
  • Patent number: 7543663
    Abstract: A virtual wheel provides a leg pair as a conveyance mechanism for a land vehicle. The virtual wheel propels the vehicle across a surface using a repetitive motion of the legs that contact the ground as would a wheel, due to their geometry. Vehicle embodiments include at least two-, three-, four- and six-wheeled vehicles, both transverse and in-line. Additionally, the invention provides a bipedal walking robot. One embodiment provides a robotic mule—a payload-carrying vehicle. The invention combines the flexible mobility of bipedal vehicles with the stability and functionality of very large-wheeled vehicles.
    Type: Grant
    Filed: October 3, 2005
    Date of Patent: June 9, 2009
    Assignee: Applied Minds, Inc.
    Inventors: Mark Setrakian, W. Daniel Hillis
  • Patent number: 7530410
    Abstract: The legged mobile robot the foot comprises a foot main body connected to each leg, a toe provided at a fore end of the foot main body to be bendable with respect to the foot main body, and a bending angle holder capable of holding a bending angle of the toe in a bendable range of the toe. In addition, a legged mobile robot control system is configured to hold the bending angle of the toe at a first time point which is a liftoff time of the leg from a floor or earlier thereof, and to release the bending angle at a second time point after the leg has lifted off the floor to restore the toe to a initial position. With this, the bending angle at the time of liftoff can continue to be held after liftoff, whereby the robot can be prevented from becoming unstable owing to the toe contacting the floor immediately after liftoff. In addition, stability during tiptoe standing can be enhanced.
    Type: Grant
    Filed: February 18, 2005
    Date of Patent: May 12, 2009
    Assignee: Honda Motor Co., Ltd.
    Inventors: Toru Takenaka, Hiroshi Gomi, Susumu Miyazaki, Kazushi Hamaya
  • Patent number: 7503410
    Abstract: A legged robot having a robot structure (20) in the form of a closed kinematic chain and an actuator (26) that contracts when activated. The contraction of the actuator extends a foot element (30) such that it can excerpt a pushing force against a ground surface. When the foot element excerpts sufficient force the legged robot can separate from the ground surface and achieve a dynamic hopping motion.
    Type: Grant
    Filed: January 29, 2007
    Date of Patent: March 17, 2009
    Assignee: The Regents of the University of California
    Inventor: Nathan J. Delson
  • Patent number: 7490681
    Abstract: A robotic vehicle having a body with an internal volume. A plurality of extendable legs project outwardly from the body for supporting the body on a surface and for propelling the body, in at least a partial rolling motion, over the surface. A gimbal system is supported within the body. The gimbal system has a support platform that is moveable within at least two non-parallel planes. An actuator is supported on the support platform and is positionable by the gimbal system into different positions to actuate selected ones of the extendable legs, to thus assist in propelling the vehicle.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: February 17, 2009
    Assignee: The Boeing Company
    Inventor: James J. Troy
  • Patent number: 7481285
    Abstract: A lifting and steering assembly for permitting a vehicle to be turned in a small area. The lifting and steering assembly includes at least one turning assembly for being coupled to the vehicle. The turning assembly comprises a shaft member is selectively extended from the vehicle whereby the turning assembly selectively engages the support surface to lift a portion of the vehicle off of the support surface. The turning assembly comprises an engaging means for engaging the support surface when shaft member of the turning assembly is extended from the vehicle. The engaging means is coupled to the shaft member. The engaging means is for advancing along the support surface to rotate the portion of the vehicle lifted off the support surface around a portion of the vehicle still in contact with the support surface.
    Type: Grant
    Filed: April 1, 2005
    Date of Patent: January 27, 2009
    Inventor: Bobbie Savage
  • Patent number: 7475745
    Abstract: An embodiment of a high-mobility vehicle comprises a vehicle body, a track assembly attached to the vehicle body, arms pivotally attached to the vehicle body, and trackless drive wheels mounted on distal ends of the arms. Another embodiment of a high-mobility vehicle comprises a vehicle chassis, right and left drive motors attached to the vehicle chassis, right and left power transmission mechanisms having high torque and low torque sets of gears, track assemblies coupled to the high torque sets of gears, and trackless drive wheels coupled to the low torque sets of gears.
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: January 13, 2009
    Inventor: Bradley G. DeRoos
  • Patent number: 7464775
    Abstract: A ground vehicle and a method for articulating a payload module for mobility assist are disclosed. The ground vehicle comprises a chassis; and a payload module capable of articulating relative to the chassis to assist the mobility of the ground vehicle. The method comprises articulating a payload module relative to a chassis.
    Type: Grant
    Filed: August 12, 2003
    Date of Patent: December 16, 2008
    Assignee: Lockheed Martin Corporation
    Inventors: David A. Clemens, John C. Dunne, Michael S. Beck, Wendell H. Chun, Jon T. Stinchcomb