Seismic Source And Detector Patents (Class 181/108)
  • Patent number: 7325647
    Abstract: Seismic emission system for use in an underground formation, using at least one seismic source movable successively in a plurality of prepared activation locations and method for implementing same. The system comprises for example a plurality of coupling devices (1) including each for example two anchor elements (12, 9?) tightly coupled with the formation (by cementing for example). These anchor elements are secured to the seismic source (V) such as a vibrator of any type or an impulsive source by transmission elements (10, 13). The seismic source is coupled with coupling device (1) by fast locking means (18, 19). Coupling devices (1) can be preinstalled at a plurality of prepared activation locations above the formation to be monitored. Seismic monitoring operations can be carried out by moving at least one seismic source successively between the different locations where coupling devices (1) are installed.
    Type: Grant
    Filed: December 12, 2002
    Date of Patent: February 5, 2008
    Assignees: Institut Francais du Petrole, Compagnie Generale de Geophysique, Gaz de France-Service National
    Inventors: Patrick Meynier, Axelle Baroni
  • Patent number: 7255196
    Abstract: A system and method for reducing acoustic, wind or other background noise that may interfere with sensing of a seismic signal is provided. More specifically, a shield is provided to enclose a geophone and thereby protect it from harmful noise. The shield may comprise a rigid shell, a structural damping material, an acoustically absorptive material, and a compliant seal for coupling the shield to the ground or reference surface.
    Type: Grant
    Filed: November 14, 2003
    Date of Patent: August 14, 2007
    Assignee: BBN Technologies Corp.
    Inventors: William B. Coney, Peter A. Krumhansl
  • Patent number: 7257050
    Abstract: A telemetry system having: a pipe; a SCADA box acoustically coupled to the pipe; and a gauge inserted in the pipe, the gauge comprising: an acoustic wave generator; a coupler mechanically connected to the acoustic wave generator, wherein the coupler is engageable and disengageable with the pipe, wherein the coupler defines an acoustic transmission path between the acoustic wave generator and the pipe when engaged with the pipe; and a signal controller in communication with the acoustic wave generator. A method for communicating information in a wellbore from a downhole location to the surface, the method having the following steps: running a downhole gauge into a pipe within the wellbore, wherein the downhole gauge comprise an acoustic wave generator; setting the downhole gauge in the pipe; and communicating an acoustic signal between the downhole gauge and the pipe.
    Type: Grant
    Filed: December 8, 2003
    Date of Patent: August 14, 2007
    Assignee: Shell Oil Company
    Inventors: John Stewart, Paul Tubel, Clark J. Bergeron
  • Patent number: 7252174
    Abstract: A downhole tool for gathering formation data from inside a borehole includes a substantially tubular housing adapted for axial connection to a drill string and multiple sensors coupled to the tubular housing. The sensors include a first pair of sensors aligned along a first axis and adapted to measure a spatial derivative along the first axis, a second pair of sensors aligned along a second axis and adapted to measure a spatial derivative along the second axis, and a third pair of sensors aligned along a third axis and adapted to measure a spatial derivative along the third axis. In selected embodiments, the spatial derivatives are used to differentiate seismic or sonic compression and shear waves measured in a downhole environment.
    Type: Grant
    Filed: September 13, 2005
    Date of Patent: August 7, 2007
    Inventors: Dale Cox, David R. Hall, H. Tracy Hall, Jr., Scott Dahlgren
  • Patent number: 7216737
    Abstract: Apparatus and methods for acoustically isolating logging tool receiver and transmitter sections. One or more modular isolators is arranged between the receiver and transmitter sections. The modular isolators comprise a high tensile strength while also providing for a high wave attenuation level. The modular isolators are mechanical mass-spring systems capable of absorbing acoustic waves propagating along the logging tool. The mass is a swinging sleeve, and the spring includes a Belleville spring stack. The use of the strong modular isolators provides acoustic isolation between the transmitters and receivers for the complete sonic frequency band at multiple modes.
    Type: Grant
    Filed: February 3, 2004
    Date of Patent: May 15, 2007
    Assignee: Schlumberger Technology Corporation
    Inventor: Hitoshi Sugiyama
  • Patent number: 7210555
    Abstract: An acoustic attenuator includes a housing having an inner side surface which defines an interior chamber and at least one dampening member both physically and acoustically coupled to the housing and projecting into the interior chamber. Acoustic energy propagating within the housing is deflected into the dampening members for acoustically dispersal within the interior chamber. In various aspects thereof, the dampening members may include one or a group of two or more generally cylindrical sleeves having one end both physically and acoustically coupled to the housing and a second end projecting into the interior chamber. Preferably, when a group of two or more cylindrical sleeves are employed, the sleeves are nested within one another. The dampening members may further include a second, oppositely disposed, group of two or more acoustic attenuators nested within one another and interdigitated with the first group of cylindrical sleeves.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: May 1, 2007
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Vimal V. Shah, Eugene J. Linyaev, Donald G. Kyle, Wallace R. Gardner
  • Patent number: 7203342
    Abstract: A method of extracting desired features from a cellular image including the steps of: (a) selecting an initial cell within the image; (b) selecting an additional cell, near the initial cell, appearing to be associated with a desired feature; (c) repeating step (b) for further cells, near at least one of the previously selected cells, appearing to be associated with said feature, until selection termination criteria are satisfied; and (d) repeating steps (a) through (c) for other initial cells. The method is particularly adept at extracting relatively weakly defined features in relatively noisy images, such as extracting faults or geologic horizons from 2D or 3D seismic data. A method of editing/filtering the features utilizing a stereo net is also disclosed. Related computer system and computer program products for implementing the method are also described.
    Type: Grant
    Filed: February 21, 2002
    Date of Patent: April 10, 2007
    Assignee: Schlumberger Technology Corporation
    Inventor: Stein Inge Pedersen
  • Patent number: 7182170
    Abstract: A gerotor and bearing apparatus for a whirling mass orbital vibrator which generates vibration in a borehole. The apparatus includes a gerotor with an inner gear rotated by a shaft having one less lobe than an outer gear. A whirling mass is attached to the shaft. At least one bearing is attached to the shaft so that the bearing engages at least one sleeve. A mechanism is provided to rotate the inner gear, the mass and the bearing in a selected rotational direction in order to cause the mass, the inner gear, and the bearing to backwards whirl in an opposite rotational direction. The backwards whirling mass creates seismic vibrations.
    Type: Grant
    Filed: October 30, 2003
    Date of Patent: February 27, 2007
    Assignee: Seismic Recovery, LLC
    Inventors: James Ford Brett, Robert Victor Westermark, Joey Earl Turner, Jr., Samuel Scott Lovin, Jack Howard Cole, Will Myers
  • Patent number: 7032707
    Abstract: A plurality of heavy mass irregularities attached to an inner wall of the drill collar attenuate waves traveling through the collar. The plurality of heavy mass irregularities are spaced and sized for the maximum attenuation of acoustic pulses in a predetermined frequency range. The mass irregularities may be rings secured to the inner surface of the collar by neck pieces, extending outwardly from the outer circumference of the ring. The mass irregularities may be made of steel or tungsten and are between six and ten in number. The spacing of the irregularities may lie between twelve and fourteen centimeters. A center pipe may be included to isolate the irregularities from the fluid flow associated with the drilling operation. The pipe may be of a soft material such as rubber to reduce transfer of acoustic noise along the drill string. The irregularities may be in an oil based fluid with the pipe fitting closely in the center of the rings.
    Type: Grant
    Filed: July 1, 2003
    Date of Patent: April 25, 2006
    Assignee: Baker Hughes Incorporated
    Inventors: Sergey Egerev, Vladimir Belov, Vladimir Dubinsky, Alexei Bolshakov, Victor Tiutekin, Victor Yushin
  • Patent number: 7028806
    Abstract: An apparatus for performing acoustic investigations while drilling a borehole in a subsurface geological formation comprises a longitudinally extending assembly conveyed in the borehole on a drilling tubular. The assembly and the drilling tubular have a drilling fluid flowing through a longitudinally extending passage therein. An acoustic transmitter is supported by the assembly. The transmitter generates acoustic signals in the assembly, the borehole and the subsurface formation. An acoustic receiver is spaced apart from the transmitter and receive the acoustic signals. An attenuator is located in the assembly between the acoustic transmitter and the acoustic receiver for attenuating the acoustic signals in the assembly within a predetermined frequency range. The attenuator comprises a tubular element of a composite material having a substantially cylindrical outer surface. The outer surface has a plurality of spaced apart masses having a predetermined spacing, mass and length firmly attached thereto.
    Type: Grant
    Filed: July 2, 2004
    Date of Patent: April 18, 2006
    Assignee: Baker Hughes Incorporated
    Inventors: Vladimir Dubinsky, Alexei Bolshakov
  • Patent number: 6985815
    Abstract: A method of seismic data processing is described in which a particular wavelet is selected from a plurality of wavelets as being most characteristic of a received seismic signal. A subtracted signal can be determined by subtracting a weighted signal of the particular wavelet from the received signal. From the subtracted signal, an additional particular wavelet can be chosen. The process of subtracting a signal and determining an additional particular one of the plurality of wavelets can be repeated until a criterion is met. The method can be repeated at several depths. The resultant spectral analysis can be used to determine, for example, an absorption coefficient.
    Type: Grant
    Filed: July 9, 2003
    Date of Patent: January 10, 2006
    Assignee: Gas Technology Institute
    Inventors: John P. Castagna, Robert W. Siegfried, II, Shengjie Sun
  • Patent number: 6915875
    Abstract: A plurality of heavy mass irregularities attached to an inner wall of the drill collar attenuate waves traveling through the collar. The plurality of heavy mass irregularities are spaced and sized for the maximum attenuation of acoustic pulses in a predetermined frequency range. The mass irregularities may be rings firmly coupled to the outer surface of the collar. Alternatively, the mass irregularities may be rings firmly coupled to the outer collar surface by neck pieces, extending inwardly from the inner circumference of the ring. The mass irregularities may be made of steel or tungsten. In another preferred embodiment, the mass irregularities are asymmetrically coupled to an outer collar wall for providing preferential directional attenuation.
    Type: Grant
    Filed: January 10, 2002
    Date of Patent: July 12, 2005
    Assignee: Baker Hughes Incorporated
    Inventors: Vladimir Dubinsky, Alexei Bolshakov
  • Patent number: 6899197
    Abstract: An acoustic logging tool including an elongated body, one or more acoustic transmitters, one or more acoustic receivers, and a broadband acoustic absorption region. A substantial portion of the broadband acoustic absorption region is between the transmitter and the receiver. The acoustic energy absorber includes a first absorber for absorbing a first mode of acoustic energy and a second absorber for absorbing a second mode of acoustic energy. The acoustic absorption material used to make the acoustic absorbers has an acoustic impedance between 20% and 120% of the material used to construct the acoustic logging tool. The acoustic logging tool includes an elongated hollow tool body, an insert configured to be inserted into the tool body, and a ring configured to be inserted onto the insert. A first element is supported by the ring and exposed to a pressure field, and a second element is supported by the ring and exposed to a pressure field.
    Type: Grant
    Filed: September 23, 2002
    Date of Patent: May 31, 2005
    Assignee: Dresser Industries, Inc.
    Inventors: Abbas Arian, Laurence T. Wisniewski, Georgios L. Varsamis, Gary L. Fickert
  • Patent number: 6883638
    Abstract: Method for operating and testing a sensor assembly (210). The sensor assembly (210) preferably includes accelerometers with axes of sensitivity orthogonal to each other. The method preferably includes determining sensor tilt angle, determining the position of the sensor, and synchronizing the operation of the sensor.
    Type: Grant
    Filed: March 16, 2000
    Date of Patent: April 26, 2005
    Assignee: Input/Output, Inc.
    Inventors: Peter Maxwell, Lawrence P. Behn, Eugene D. Bednar, Jeffery C. Gannon, Michael Arthur Corrigan, Glen Ragan, Dale J. Lambert, Henry Thomas Polk, Steven L. Roche, Wilfred Roy Bertrand, David Wilson, Byron Lee Cain, Michael George McMahon, John C. Downey Jr., Keith Elder
  • Patent number: 6868036
    Abstract: An acoustic logging tool includes external baffle assemblies forming a waveguide structure at the acoustic source. The logging tool is designed for acoustic logging of earth formation surrounding a borehole. The external baffle assemblies form a waveguide structure that is designed to increase signal to noise ratio in an acoustic logging tool using dipole or other acoustic waves. In a preferred embodiment, the acoustic logging tool includes an elongated transmitter module, and a receiver sonde having a linear array of acoustic receivers. The transmitter module includes first and second cylindrical masses spaced apart along the axis by first and second spacers. The first cylindrical mass defines a first circular facing surface and a first cylindrical outer surface. The second cylindrical mass defines a second circular facing surface and a second cylindrical outer surface.
    Type: Grant
    Filed: November 8, 2002
    Date of Patent: March 15, 2005
    Assignee: Schlumberger Technology Corporation
    Inventors: Canyun Wang, Jahir Pabon
  • Patent number: 6837332
    Abstract: An apparatus (10) and method are disclosed for eliminating a noise signal from at least one source during an acoustic measurement of a subsurface geological formation or borehole. The apparatus (10) includes a longitudinal body for positioning in the borehole and a transmitter (22) supported by the body for transmitting acoustic signals into the formation and borehole. A sensor (23), substantially isolated within the body, is used to detect one or more noise signals and a receiver (24) is carried by the body for receiving acoustic signals traversing the formation and borehole, and for receiving one or more noise signals.
    Type: Grant
    Filed: March 22, 1999
    Date of Patent: January 4, 2005
    Assignee: Halliburton Energy Services, Inc.
    Inventor: Paul F. Rodney
  • Patent number: 6834743
    Abstract: The acoustic isolator assembly of the present invention comprises a elongated cylindrical body suited for connection to an acoustic array and subsequent disposition within a wellbore. According to one embodiment of the present invention, the acoustic isolator comprises a plurality of cylindrical isolator modules that are coaxially arranged to form the body of the tool. Each isolator module comprises a spring disposed within an outer housing. The separate isolator modules are attached to one another by connecting rods around which are disposed a plurality of metal spacers. The isolator module further comprises mechanical stops that limit the deflection of the spring during high axial loading. These features enable the acoustic isolator assembly to withstand the high loading that may be applied during logging operations. Therefore, the isolator modules are capable of supporting high compressive and tensile loads without suffering permanent deformation of the springs.
    Type: Grant
    Filed: December 7, 2001
    Date of Patent: December 28, 2004
    Assignee: Haliburton Energy Services, Inc.
    Inventors: Abbas Arian, Randall Jones
  • Patent number: 6831877
    Abstract: The present invention provides a system for, and method of determining an azimuth of a seismic energy source. In one embodiment, the system includes a directional assembly having a mount configured to be coupled to a seismic energy source, a rotatable mass assembly coupled to the mount, a compass rose coupled to one of the mount or the rotatable mass assembly and a direction reference coupled to the other of the mount or the rotatable mass assembly. The compass rose is registered with the direction reference to provide a direction orientation of the rotatable mass assembly with respect to the mount.
    Type: Grant
    Filed: September 14, 2001
    Date of Patent: December 14, 2004
    Assignees: Vecta Technologies, Inc., Board of Regents for the Univ. of Texas System
    Inventors: Bob A. Hardage, Allen L. Gilmer
  • Patent number: 6782970
    Abstract: A shaftless acoustic source is disclosed having a solenoid, a bullet and driving electronics. The bullet, which is positioned inside the solenoid's coil, can be accelerated by a magnetic force generated when a current pulse is applied to the coil. Acoustic energies are generated upon the impact of the bullet with an object, such as a borehole wall. This impact force can be described by the Hertzian Contact Theory (also referred to herein as Hertzian Theory) as a point of normal force with a time function similar to a half period sine function. A retraction device may be used to retract the bullet back into the solenoid after firing.
    Type: Grant
    Filed: April 25, 2002
    Date of Patent: August 31, 2004
    Assignee: Schlumberger Technology Corporation
    Inventor: Chung Chang
  • Patent number: 6739423
    Abstract: A sleeve for an acoustic logging tool has a structure with a window section having fewer bars than a conventional sleeve separated by a slotted region with thin circumferential slots which are stress-relieved at the ends (“dumb-bell” shaped). Steel receiver mounts are provided for hydrophone pressure sensors and this, together with the axially oriented hydrophones makes the tool less susceptible to interfering vibration.
    Type: Grant
    Filed: October 15, 2002
    Date of Patent: May 25, 2004
    Assignee: Schlumberger Technology Corporation
    Inventors: Hitoshi Tashiro, Jahir Pabon, Frank Morris, Hitoshi Sugiyama, David Hoyle, David Leslie, Kazumasa Kato
  • Patent number: 6712141
    Abstract: A method and apparatus for placing acoustic devices in wellbores. The method comprises: providing a tubing with at least one anchoring device in the wellbore, where the anchoring device is extendable to the wellbore to exert a force on the wellbore; attaching at least one acoustic device to at least one anchoring device; placing the tubing in the least one acoustic device attached to the at least one anchoring device in the wellbore; and setting the anchoring device to extend to the wellbore to exert a force on the wellbore, thereby coupling the acoustic device to the wellbore. The wellbore system comprises a tubing that has an annular space between the tubing and the wellbore. At least one anchoring device is disposed on an outer surface of the tubing and extends to and exerts a force on the wellbore. An acoustic device is attached to the anchoring device.
    Type: Grant
    Filed: October 23, 2000
    Date of Patent: March 30, 2004
    Assignee: Baker Hughes Incorporated
    Inventors: Terry R. Bussear, Michael W. Norris
  • Patent number: 6672422
    Abstract: A seismic data acquisition technique comprises laying a seismic data cable having a plurality of spaced apart connection nodes and a plurality of sensor strings connected to the connection nodes along a line of the area to be seismically surveyed. Each sensor string comprises ten or more seismic sensors for producing respective output signals representative of a seismic signal received by them. The sensors of the sensor strings are laid out in at least two sets of groups, each group containing several of the sensors and transmitting at least one seismic signal to a connection node, and the sets of groups being disposed along respective spaced apart lines generally parallel to the line along which the seismic data cable is laid.
    Type: Grant
    Filed: October 7, 2002
    Date of Patent: January 6, 2004
    Assignee: WesternGeco, L.L.C.
    Inventors: Jacques Orban, Simon Frederick Tong
  • Publication number: 20030205428
    Abstract: The present invention discloses a shaftless acoustic source having a solenoid, a bullet and driving electronics. The bullet, which is positioned inside the solenoid's coil, can be accelerated by a magnetic force generated when a current pulse is applied to the coil. Acoustic energies are generated upon the impact of the bullet with an object, such as a borehole wall. This impact force can be described by the Hertzian Contact Theory (also referred to herein as Hertzian Theory) as a point of normal force with a time function similar to a half period sine function. A retraction means may be used to retract the bullet back into the solenoid after firing.
    Type: Application
    Filed: April 25, 2002
    Publication date: November 6, 2003
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventor: Chung Chang
  • Patent number: 6631783
    Abstract: This invention relates to mapping the hydrocarbon reservoir characteristics by mapping the reservoir formations that display dynamic elastic nonlinearity responses to the seismic signals. The main reason of this nonlinear behavior in the reservoir rocks is their bulk rock property: the porosity, fractures, differential pressure and pore saturation. To map these bulk rock properties, the interaction of the two seismic waves as they propagate through elastically nonlinear rocks is recorded. Two compressional seismic signals are transmitted from the surface. Seismic reflection data using surface or borehole detectors are recorded. One of the transmitted signals is a conventional swept frequency and the other is a mono-frequency signal. During the propagation of these two signals through the elastically nonlinear reservoir rocks, there is an interaction between the two signals. The sum and difference frequencies of the two primary seismic signals that were transmitted from the surface are created.
    Type: Grant
    Filed: March 26, 2001
    Date of Patent: October 14, 2003
    Assignee: Nonlinear Seismic Imaging, Inc.
    Inventor: Tawassul Ali Khan
  • Patent number: 6619423
    Abstract: A measuring device for measuring the elastic properties of a surface structure (3), comprising a probe (2) arranged within a housing (1), a transmitter and at least one receiver, the transmitter transmitting acoustic pulses and the receiver picking up the propagation behavior of the acoustic pulses in the surface structure (3), a control means (16) for generating acoustic pulses and an evaluating means (18) for the measuring signals received by the receiver, at least two adjacent measuring tips (4, 6) being connected as transmitting and receiving elements, the measuring tips being adapted to be set onto the surface structure (3) and having strip-shaped bi-morph elements (12, 14) carried by a holder (8, 10), wherein the measuring tips (4,6) are formed by the holders (8, 10) of the bi-morph elements (12, 14) and the strip-shaped elements (12, 14) have one side of one of their ends fastened to the holder (8, 10).
    Type: Grant
    Filed: June 21, 2001
    Date of Patent: September 16, 2003
    Assignee: Courage + Khazaka electronic GmbH
    Inventor: Wilfried Courage
  • Patent number: 6601671
    Abstract: The present invention provides a new and unique method, sensor, and apparatus for performing a seismic survey of an earth formation in relation to a borehole. The method includes arranging at least one strain seismic sensor in conjunction with a borehole structure, and mechanically coupling the borehole structure to the borehole to allow seismic data to be accurately transferred to the sensor. The sensor is preferably a fiber optic sensor, including a Fiber Bragg Grating which may be coupled to a relevant borehole structure in a number of ways.
    Type: Grant
    Filed: July 10, 2000
    Date of Patent: August 5, 2003
    Assignee: Weatherford/Lamb, Inc.
    Inventors: Xiaomin Zhao, Francis X. Bostick, Jian-Qun Wu, Daniel L. Gysling, Peter C. Ogle, Allen R. Davis, Alan D. Kersey, Bob A. Hardage
  • Publication number: 20030106739
    Abstract: The acoustic isolator assembly of the present invention comprises a elongated cylindrical body suited for connection to an acoustic array and subsequent disposition within a wellbore. According to one embodiment of the present invention, the acoustic isolator comprises a plurality of cylindrical isolator modules that are coaxially arranged to form the body of the tool. Each isolator module comprises a spring disposed within an outer housing. The separate isolator modules are attached to one another by connecting rods around which are disposed a plurality of metal spacers. The isolator module further comprises mechanical stops that limit the deflection of the spring during high axial loading. These features enable the acoustic isolator assembly to withstand the high loading that may be applied during logging operations. Therefore, the isolator modules are capable of supporting high compressive and tensile loads without suffering permanent deformation of the springs.
    Type: Application
    Filed: December 7, 2001
    Publication date: June 12, 2003
    Inventors: Abbas Arian, Randall Jones
  • Patent number: 6561310
    Abstract: A non-contact vibrometer is employed to measure seismic energy imparted to the earth by a land vibrator. The non-contact vibrometer can be a laser vibrometer operable to measure the motion of a baseplate of the land vibrator. A computing device can be used to record both the imparted seismic energy detected by the non-contact vibrometer and reflected seismic energy sensed with geophones.
    Type: Grant
    Filed: March 7, 2001
    Date of Patent: May 13, 2003
    Assignee: Conocophillips Company
    Inventor: Gary M. Hoover
  • Publication number: 20030075380
    Abstract: A seismic data acquisition technique comprises laying a seismic data cable having a plurality of spaced apart connection nodes and a plurality of sensor strings connected to the connection nodes along a line of the area to be seismically surveyed. Each sensor string comprises ten or more seismic sensors for producing respective output signals representative of a seismic signal received by them. The sensors of the sensor strings are laid out in at least two sets of groups, each group containing several of the sensors and transmitting at least one seismic signal to a connection node, and the sets of groups being disposed along respective spaced apart lines generally parallel to the line along which the seismic data cable is laid.
    Type: Application
    Filed: October 7, 2002
    Publication date: April 24, 2003
    Inventors: Jacques Orban, Simon Frederick Tong
  • Patent number: 6536553
    Abstract: An apparatus for detecting an underground abject includes a container in contact with the ground surface; a medium disposed in the container; at least one acoustic sensor disposed in the medium in the container; and an output device connected to the acoustic sensor. A portion of the container in contact with the ground is substantially acoustically transparent and conforms to contours of the ground. The acoustic impedance of the medium in the container is substantially the same as the acoustic impedance of the ground. A method of detecting an underground object includes receiveing reflected acoustic noise with at least one acoustic sensor immersed in a medium, the mediukm being desposed in a container in contact with a ground surface; converting the reflected acoustic noise to electrical signals; and, using an output device, converting teh eletrical signals to a form that can be sensed by a human to determine if the undergroung object has been detected.
    Type: Grant
    Filed: April 25, 2000
    Date of Patent: March 25, 2003
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Michael V. Scanlon
  • Publication number: 20020179364
    Abstract: A system and method for utilizing a surface located oscillator to generate seismic signals at a downhole location. The system includes a vibratory source for generating axial vibrational energy in a tubular string anchored in the borehole at a suitable location. The vibratory source may be operated at a predetermined frequency or may generate a swept frequency signal. The axial vibrations are transmitted through the tubular string and impart a seismic signal through the anchor to the formation.. In different configurations, the system imparts broadband seismic signals into the formation. Sensors are mounted on the vibratory source and downhole anchor for monitoring the system operation. Seismic receivers are deployed on the surface, in offset wells, or in the source well. Signals from the receivers are transmitted to a control unit. The control unit utilizes the sensor and receiver signals to control the operation of the vibratory source.
    Type: Application
    Filed: January 15, 2002
    Publication date: December 5, 2002
    Applicant: Baker Hughes Incorporated
    Inventors: Terry R. Bussear, Michael W. Norris
  • Patent number: 6488116
    Abstract: An acoustic receiver for sensing acoustic waves and generating orthogonal triaxial acoustic response data representative of said acoustic waves is disclosed. The receiver has at least four acoustic sensors oriented in at least four different directions. Each of the acoustic sensors is adapted to produce an electrical signal in response to an acoustic wave impinging thereon. The inventive acoustic receiver also includes means for combining the electrical signals to yield orthogonal triaxial acoustic response data. In one embodiment the means for combining the electrical signals comprises wiring the acoustic sensors in two series pairs to produce a combined output along two of the three orthogonal axes and orienting at least one acoustic sensor substantially parallel to the longitudinal axis of the acoustic receiver.
    Type: Grant
    Filed: June 20, 2001
    Date of Patent: December 3, 2002
    Assignee: ExxonMobil Upstream Research Company
    Inventor: Jeffrey R. Bailey
  • Publication number: 20020175020
    Abstract: The present invention provides a method and apparatus for isolating a seismic sensor module from high-g shock loads such as those encountered during handling, deployment and retrieval of the module. The sensor module includes one or more MEMS accelerometers in an electronics package. The electronics package is housed within a module case. And one or more isolators are disposed between the electronics package and the module case to provide shock isolation.
    Type: Application
    Filed: May 25, 2001
    Publication date: November 28, 2002
    Inventors: Michael A. Corrigan, Jeffrey C. Gannon, Leo M. Dekkers
  • Patent number: 6480118
    Abstract: A method for improving ROP and reducing hazards in drilling subterranean wells by using an acoustical system 15 to look ahead of the drill bit 14, detects and analyzes geologic features ahead of the bit 14 which may be qualified as drilling hazards 17. Detection of such hazards 17 may facilitate use of more aggressively penetrating bits 14 such as PDC bits as opposed to roller cone bits. In addition, other drilling parameters may be adjusted to improve ROP due to the ability to timely respond to identified hazards 17 before they may be detrimentally encountered by the bit 14. The acoustic system 15 may look ahead of the bit 14 by at least 100 meters, using propagated acoustic waves 19 to locate changes in acoustic impedance which may represent drilling hazards 17. In addition, bulk resistivity ahead of the bit 14 may also be measured and used to locate drilling hazards 17.
    Type: Grant
    Filed: March 27, 2000
    Date of Patent: November 12, 2002
    Assignee: Halliburton Energy Services, Inc.
    Inventor: M. Vikram Rao
  • Patent number: 6478107
    Abstract: An axially extended downhole seismic source is disclosed. In one embodiment, the seismic source includes multiple pressure storage chambers, each having an inlet valve and an outlet valve. The inlet valve is coupled between the pressure storage chamber and the interior of the drill string, and the outlet valve is similarly coupled between the pressure storage chamber and the annular space around the drill string. A compressible fluid may be provided in the pressure storage chambers, and pistons may be positioned to contact the compressible fluid. For each pressure storage chamber, an inlet piston contacts the compressible fluid and fluid inside the drill string, while an outlet piston contacts the compressible fluid and fluid in the annular space around the drill string. When the outlet valve is closed, the inlet valve can be opened to allow pressure inside the drill string to compress the compressible fluid inside the pressure storage chamber.
    Type: Grant
    Filed: May 4, 2000
    Date of Patent: November 12, 2002
    Assignee: Halliburton Energy Services, Inc.
    Inventors: James R. Birchak, Robert L. Malloy, Carl A. Robbins, Eugene J. Linyaev, David J. Young
  • Patent number: 6470996
    Abstract: A wireline acoustic probe and associated methods provide enhanced calibration and communication capabilities in a downhole acoustic communication system. In a described embodiment, an acoustic probe is conveyed on a wireline to a position proximate a downhole acoustic transmitter. A command is transmitted acoustically from the probe to the transmitter, causing the transmitter to generate acoustic frequency sweeps. The sweeps are received by the probe proximate a downhole acoustic receiver, permitting an optimum acoustic transmission frequency to be selected.
    Type: Grant
    Filed: March 30, 2000
    Date of Patent: October 29, 2002
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Donald Kyle, Vimal Shah
  • Publication number: 20020134612
    Abstract: This invention relates to mapping the hydrocarbon reservoir characteristics by mapping the reservoir formations that display dynamic elastic nonlinearity responses to the seismic signals. The main reason of this nonlinear behavior in the reservoir rocks is their bulk rock property: the porosity, fractures, differential pressure and pore saturation. To map these bulk rock properties, the interaction of the two seismic waves as they propagate through elastically nonlinear rocks is recorded. Two compressional seismic signals are transmitted from the surface. Seismic reflection data using surface or borehole detectors are recorded. One of the transmitted signals is a conventional swept frequency and the other is a mono-frequency signal. During the propagation of these two signals through the elastically nonlinear reservoir rocks, there is an interaction between the two signals. The sum and difference frequencies of the two primary seismic signals that were transmitted from the surface are created.
    Type: Application
    Filed: March 26, 2001
    Publication date: September 26, 2002
    Inventor: Tawassul A. Khan
  • Patent number: 6419044
    Abstract: A seismic acquisition system includes one or more perforating shaped charge modules activable to generate seismic signals into an earth sub-surface. The seismic signals are created by perforating jets formed by the perforating shaped charge modules when activated. The perforating jets produce directional seismic signals that reduce the amount of lateral noise. One or more detectors are employed to receive signals reflected from the earth sub-surface in response to the seismic signals.
    Type: Grant
    Filed: April 19, 2000
    Date of Patent: July 16, 2002
    Assignee: Schlumberger Technology Corporation
    Inventors: Glen-Allan S. Tite, James E. Brooks, Paul A. Lezak
  • Patent number: 6418081
    Abstract: The present invention discloses a buried object detection system. The detection system has an acoustic emitter capable of generating a non-linear acoustic impulse or a continuous acoustic signal of variable amplitude and frequency. Sensors are deployed on an appropriate surface or surfaces of a granular medium, which are capable of detecting the backscattered and, if possible, forward scattered signals of the original impulse or wave from a buried inclusion or inclusions. The information received by the sensors may be transmitted to a computer for further manipulation and analysis.
    Type: Grant
    Filed: October 20, 2000
    Date of Patent: July 9, 2002
    Assignee: The Research Foundation of State University of New York
    Inventors: Surajit Sen, Michael J. Naughton
  • Patent number: 6412592
    Abstract: A device which picks up elastic waves, such as a geophone for example, in positions far from the natural operating position for which it is designed. The device comprises an electrodynamic pickup including a magnet (1), a moving coil (2) placed in the magnetic field, springs (4) suited to hold the coil in a well-centered static position when the axis thereof is parallel to a selected reference direction (horizontal or vertical, for example) and a current source which applies to the coil an electrical current which corrects any unbalance of the coil in relation to the static position thereof due to an inclination of the axis of the coil in relation to the reference direction. The current source may be for example a source of direct current (5) and a voltage divider (P) whose division factor depends on the angle between the axis of the pickup and a reference axis or a compensating device suited to minimize the distortion ratio of the geophone.
    Type: Grant
    Filed: June 5, 2000
    Date of Patent: July 2, 2002
    Assignee: Institut Francais du Petrole
    Inventor: Patrick Meynier
  • Publication number: 20020029924
    Abstract: Measuring device for measuring the elastic properties of a surface structure A measuring device for measuring the elastic properties of a surface structure (3), comprising a probe (2) arranged within a housing (1), a transmitter and at least one receiver, the transmitter transmitting acoustic pulses and the receiver picking up the propagation behavior of the acoustic pulses in the surface structure (3), a control means (16) for generating acoustic pulses and an evaluating means (18) for the measuring signals received by the receiver, at least two adjacent measuring tips (4, 6) being connected as transmitting and receiving elements, the measuring tips being adapted to be set onto the surface structure (3) and having strip-shaped bi-morph elements (12, 14) carried by a holder (8, 10), wherein the measuring tips (4,6) are formed by the holders (8, 10) of the bi-morph elements (12, 14) and the strip-shaped elements (12, 14) have one side of one of their ends fastened to the holder (8, 10).
    Type: Application
    Filed: June 21, 2001
    Publication date: March 14, 2002
    Inventor: Wilfried Courage
  • Publication number: 20020011378
    Abstract: An acoustic receiver for sensing acoustic waves and generating orthogonal triaxial acoustic response data representative of said acoustic waves is disclosed. The receiver has at least four acoustic sensors oriented in at least four different directions. Each of the acoustic sensors is adapted to produce an electrical signal in response to an acoustic wave impinging thereon. The inventive acoustic receiver also includes means for combining the electrical signals to yield orthogonal triaxial acoustic response data. In one embodiment the means for combining the electrical signals comprises wiring the acoustic sensors in two series pairs to produce a combined output along two of the three orthogonal axes and orienting at least one acoustic sensor substantially parallel to the longitudinal axis of the acoustic receiver.
    Type: Application
    Filed: June 20, 2001
    Publication date: January 31, 2002
    Inventor: Jeffrey R. Bailey
  • Publication number: 20010035311
    Abstract: An integrated ocean bottom towed four-component array for seismic data acquisition consists of a four-channel electronic section for seismic data collection, a gimbaled three-component geophone and a hydrophone in a housing. The array connects with a submarine cable through a cable joint in order to acquire four components of data consisting of seismic P wave, shear wave and hydrophone in total. Through cable data transmission and processing in a central station, ocean bottom oil and gas structure information can be obtained. Because of the high SNR acquisition in the ocean bottom seismic data acquisition of the present invention, and the waterproof cable interconnections between each of the sections of the present apparatus, data acquisition of high quality can be gained to realize highly efficient and easy ocean bottom towing operations.
    Type: Application
    Filed: April 19, 2001
    Publication date: November 1, 2001
    Applicant: China National Petroleum Corporation
    Inventors: Guoxin He, Zailu Zhang, Peichang Li, Yi Lin, Xiaoquan Han, Defu Cai, Jingping Xiao, Yonglin Zhang
  • Patent number: 6213250
    Abstract: An acoustic logging apparatus includes a tool body and a housing. A transducer operating in the bending mode is mounted in the housing. The transducer operates such that it is excited by or emits acoustic energy in only one of the two directions substantially perpendicular to the face of the transducer. The housing is mounted substantially removed from the axis of the body. An acoustic receiver includes an outer sleeve having a flange and a hat slidably mounted within the outer sleeve. The sliding of the hat compensates for variations in pressure and temperature. An acoustic transmitter includes a main housing and a hat slidably supported within the main housing. The sliding of the hat compensates for variations in pressure and temperature. Combinations of air gaps and o-rings in the transducer acoustically isolate a piezoelectric crystal from its housing and the housing from its enclosure. The acoustic receiver and acoustic transmitter are configured to be replaced in the field.
    Type: Grant
    Filed: September 25, 1998
    Date of Patent: April 10, 2001
    Assignee: Dresser Industries, Inc.
    Inventors: Laurence T. Wisniewski, Abbas Arian, Georgios L. Varsamis
  • Patent number: 6131695
    Abstract: A method for echo-locating underground structures, such as piping, by launching a series of acoustic impulses into the ground to insonify the structures in an area where the structures are believed to be buried, detecting acoustic echoes returned from the insonified structures and displaying the returned echo data in such a manner that the oldest sequence of echo signals appears in an upper portion and the newest in a lower portion of the display.
    Type: Grant
    Filed: January 15, 1998
    Date of Patent: October 17, 2000
    Assignee: Lucent Technologies Inc
    Inventor: Ronald Lee Earp
  • Patent number: 6076629
    Abstract: There is provided an acoustic source especially for use in seismic studies at sea. The acoustic source has a longitudinal axis and sound emitting surfaces adapted to be put into sound emitting movements towards and away from each other by use of a drive unit. The sound emitting surfaces comprise two curved plate members having upper and lower ends essentially symmetrically positioned in relation to the longitudinal axis of the acoustic source, and forming a convex cross section with their respective upper and lower edges converging towards each other. The upper and lower edges of the sound emitting surfaces, respectively, are connected to each other with two corresponding side elements, the side elements each being connected to at least one hinge stretching along at least a part of the length of the source.
    Type: Grant
    Filed: October 8, 1998
    Date of Patent: June 20, 2000
    Assignee: Unaco Systems AB
    Inventor: Rune Tengham
  • Patent number: 6076630
    Abstract: A marine seismic source for generating acoustic source energy. A housing has a continuous exterior perimeter which is moveable to displace water. Movement of the housing can be accomplished by providing alternating convex and concave exterior surfaces connected with inflection points. The composite shape provides movement inwardly or outwardly, and can be moved with different types of actuators. Piezoelectric elements can be activated to move the housing surfaces and to change the internal housing volume. The resulting pressure pulse provides acoustic source energy useful for the evaluation of subterranean geologic formations and for other purposes.
    Type: Grant
    Filed: February 4, 1999
    Date of Patent: June 20, 2000
    Assignee: Western Atlas International, Inc.
    Inventor: Loran D. Ambs
  • Patent number: 6065562
    Abstract: A seismic vibrator system for imparting compressional and shear wave vibrations into the earth has an earth contacting base with a vertical post. A tubular hub is slidably received on the post in a piston/cylinder relationship. Spaced apart horizontal top and bottom plates are secured to the hub. A mass is slidably supported between the plates. Pistons interconnect the hub and the mass. Hydraulic energy is used to reciprocate the mass vertically on the post and horizontally between the plates.
    Type: Grant
    Filed: July 27, 1998
    Date of Patent: May 23, 2000
    Assignee: Industrial Vehicles International, Inc.
    Inventors: James M. Bird, James M. Bird, Jr., Elmo W. Christensen, Michael G. Grady
  • Patent number: 6050361
    Abstract: A cavitation-resistant sonar array having reduced spacing between transdu elements is provided. The array has a series of transducer elements attached to an array fixture with spacing between elements being fixed at one-quarter wavelength or closer. Cavitation caused by this close spacing is eliminated 11 by replacing the water spaces between elements with a rho-c rubber which matches the acoustic impedance, z, of water, that is z=.rho.c. The rho-c material is bonded to element to prevent loss of contact between the element and the spacer. A processing computation correcting signal data is provided to account for any differences in the speed of sound, c, in the rho-c material when compared to the speed of sound in water.
    Type: Grant
    Filed: September 17, 1998
    Date of Patent: April 18, 2000
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Anthony A. Ruffa, Thomas R. Stottlemyer
  • Patent number: 6041888
    Abstract: Acoustic source, especially for use in seismic studies at sea, with sound emitting surfaces adapted to be put into sound emitting movements toward and away from each other by use of a drive unit in a known manner, in which the sound emitting surfaces comprise two curved plate members essentially symmetrically positioned in relation to the longitudinal axis of the source, forming a convex cross section with their respective upper and lower edges converging towards each other, and the respective upper and lower edges of the sound emitting surfaces are flexibly connected to two corresponding side elements positioned between them, and that the source comprises a rigid frame for supporting the drive unit, comprising at least two rigid slide rods stretching through the side elements, and that rigid covers are mounted on the slide rods, covering at least the whole side elements, thus forming rigid, covering surfaces with a constant distance between the covers.
    Type: Grant
    Filed: October 8, 1998
    Date of Patent: March 28, 2000
    Assignee: Unaco Systems AB
    Inventor: Rune Tengham