Utilizing Magnet Or Magnetic Field During Synthesis Patents (Class 205/339)
  • Patent number: 11043349
    Abstract: Some variations provide an electrochemical solid-state field-emission ion source comprising: (a) an ion conductor comprising a protuberance within a protuberance region, wherein the ion conductor contains mobile ions; (b) a first electrode disposed distally from the ion conductor, wherein the protuberance region is on the same side of the first electrode as the ion conductor; (c) a second electrode in contact with the ion conductor, wherein the second electrode is electrically isolated from the first electrode; and (d) an electrical insulator between the ion conductor and the first electrode. Some variations provide a method of electrochemically emitting ions from a field-emission ion source, comprising: applying an electrode potential between the first electrode and the second electrode; oxidizing or reducing the atoms in the atom reservoir, and transporting the atoms into and through the ion conductor as mobile ions; and emitting the mobile ions from the protuberance.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: June 22, 2021
    Assignee: HRL Laboratories, LLC
    Inventor: Christopher S. Roper
  • Patent number: 10197338
    Abstract: An engineered ecosystem, moderating eight primary systems—thermal management, atmospheric optimization, radiation controls, hydrological systems, energy systems, material flows, systems management, and built systems—to provide homeostatic regulation of cascading flows of matter and energy.
    Type: Grant
    Filed: August 22, 2013
    Date of Patent: February 5, 2019
    Inventor: Kevin Hans Melsheimer
  • Patent number: 9279188
    Abstract: Hybrid thermochemical water splitting cycles are provided in which thermally reduced metal oxides particles are used to displace some but not all of the electrical requirements in a water splitting electrolytic cell. In these hybrid cycles, the thermal reduction temperature is significantly reduced compared to two-step metal-oxide thermochemical cycles in which only thermal energy is required to produce hydrogen from water. Also, unlike the conventional higher temperature cycles where the reduction step must be carried out under reduced oxygen pressure, the reduction step in the proposed hybrid cycles can be carried out in air, allowing for thermal input by a solar power tower with a windowless, cavity receiver.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: March 8, 2016
    Assignee: Sandia Corporation
    Inventors: Richard B. Diver, Jr., Robert D. Palumbo, Nathan P. Siegel, James E. Miller
  • Patent number: 9103045
    Abstract: A device for applying a magnetic field to a container comprises an adjustable magnetic field generator. The adjustable magnetic field generator is adjacent to the container and has a magnet having one magnetic pole adjacent a wall of the container and another magnetic pole away from the wall of the container. The adjustable magnetic field generator comprises a magnet. The intensity of magnetic field applied to the container gradually decreases from the container wall adjacent the magnetic pole of the magnet to the opposite container wall. Method for coloring anode coatings using the coloring device is also provided.
    Type: Grant
    Filed: March 4, 2014
    Date of Patent: August 11, 2015
    Assignees: SHENZHEN FUTAIHONG PRECISION INDUSTRY CO., LTD., FIH (Hong Kong) Limited
    Inventors: Shu-Xiang Zhou, Chia-Wen Tsao
  • Publication number: 20150034492
    Abstract: Membrane-less electrolysis systems including an electrolysis chamber having an inlet for water, a cathode associated with the electrolysis chamber that includes a plurality of apertures within the cathode that fluidly couple the chamber with a cathode fluid pathway that is fluidly coupled to a hydrogen gas collector, an anode associated with the electrolysis chamber that similarly includes a plurality of apertures fluidly coupling the chamber with an anode fluid pathway that is fluidly coupled to an oxygen gas collector, a power source electrically coupled to the cathode and anode, and a pump fluidly coupled with the water reservoir and electrolysis chamber so that the pump is configured to pump water into the electrolysis chamber, through the cathode and anode apertures, into the cathode and anode fluid pathways, respectively, and into the product gas collectors.
    Type: Application
    Filed: October 29, 2012
    Publication date: February 5, 2015
    Applicant: ADVANCED HYDROGEN PRODUCTS, LLC
    Inventor: ADVANCED HYDROGEN PRODUCTS, LLC
  • Publication number: 20140144784
    Abstract: The present invention relates to a method for recovering elemental silicon from silicon sludge by electrolysis in a non-aqueous electrolyte. The recovery method of silicon according to the present invention can achieve direct reduction of silicon by electrolysis at a low temperature (below 200° C.), control the structure of silicon by a simple process and a change in electrolysis conditions, and perform a continuous process by adding a silicon salt.
    Type: Application
    Filed: February 21, 2013
    Publication date: May 29, 2014
    Applicant: Kumoh National Institute of Technology Industry-Academic Cooperation Foundation
    Inventor: Kumoh National Institute of Technology Industry-Academic Cooperation Foundation
  • Patent number: 8608934
    Abstract: The technology provides apparatus and methods for generating hydrogen without applying electrical energy from an outside source. An exemplary apparatus has an outer housing having an interior divided into an upper portion and a lower portion separated by a septum. The lower portion contains an electrolyte and a composite electrode at least partially immersed in the electrolyte. The electrolyte includes zinc hydroxide dissolved therein. The composite electrode has an aluminum tube enclosing at least one magnet. An outer surface of the electrode housing is at least partially covered with nano-particles held in place by magnetic attraction of the at least one magnet to form the electrode. The magnetically-adherent nano-particles form a second electrode, in direct contact with the first electrode. The generator apparatus has a vent in communication with the upper portion of the interior of the outer housing for removal of generated hydrogen.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: December 17, 2013
    Assignee: G & M Energy Systems, LLC
    Inventor: Linnard Gene Griffin
  • Patent number: 8404099
    Abstract: A method for the electrolytic production of hydrogen where radiation excited water from a spent fuel pool of a nuclear power plant is delivered to one or more electrolysers where DC current is applied to pairs of electrodes in the electrolysers to form hydrogen and oxygen. The hydrogen is collected. The collection of hydrogen can be carried out in a grid energy storage system to produce large quantities of hydrogen during low grid demand for electricity with little or no hydrogen during high grid electricity demand.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: March 26, 2013
    Inventor: David E. Fowler
  • Publication number: 20130068628
    Abstract: Disclosed is a method for extracting gallium from fly ash, which comprises the following steps: crushing the fly ash and removing Fe by magnetic separation; then dissolving it by using hydrochloride acid (2) to obtain hydrochloric acid leachate; adsorbing gallium in the hydrochloric acid leachate with macro-porous cationic resin, followed by eluting to obtain the eluent (5) containing gallium; adding sodium hydroxide (6) solution into the eluent containing gallium to react and obtaining sodium metaaluminate solution containing gallium (8); introducing CO2 into the sodium metaaluminate solution containing gallium (8) for carbonation, followed by separating gallium from aluminum and obtaining aluminum-gallium double salt (15) with the gallium to alumina mass ratio being more than 1:340; adding the aluminum-gallium double salt (15) into sodium hydroxide (17) to react, followed by alkalinity-adjustment concentration to obtain alkali solution containing gallium and aluminum; electrolyzing (10) the alkali solution
    Type: Application
    Filed: April 27, 2011
    Publication date: March 21, 2013
    Applicant: CHINA SHENHUA ENERGY COMPANY LIMITED
    Inventors: Wen Ling, Yinshan Jiang, Cundi Wei, Nan Li, Dazhao Gu, Zhaohua Guo, Dianfan Yang, Junzhou Chi, Ping Zou
  • Patent number: 8366974
    Abstract: An article of manufacture and methods of making same. In one embodiment, the article of manufacture has a plurality of zinc oxide layers substantially in parallel, wherein each zinc oxide layer has a thickness d1, and a plurality of organic molecule layers substantially in parallel, wherein each organic molecule layer has a thickness d2 and a plurality of molecules with a functional group that is bindable to zinc ions, wherein for every pair of neighboring zinc oxide layers, one of the plurality of organic molecule layers is positioned in between the pair of neighboring zinc oxide layers to allow the functional groups of the plurality of organic molecules to bind to zinc ions in the neighboring zinc oxide layers to form a lamellar hybrid structure with a geometric periodicity d1+d2, and wherein d1 and d2 satisfy the relationship of d1?d2?3d1.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: February 5, 2013
    Assignee: Northwestern University
    Inventors: Samuel I. Stupp, Josh Goldberger, Marina Sofos
  • Patent number: 8202411
    Abstract: Apparatus and processes are disclosed for electrowinning metal from a fluid stream. A representative apparatus comprises at least one spouted bed reactor wherein each said reactor includes an anolyte chamber comprising an anode and configured for containing an anolyte, a catholyte chamber comprising a current collector and configured for containing a particulate cathode bed and a flowing stream of an electrically conductive metal-containing fluid, and a membrane separating said anolyte chamber and said catholyte chamber, an inlet for an electrically conductive metal-containing fluid stream; and a particle bed churning device configured for spouting particle bed particles in the catholyte chamber independently of the flow of said metal-containing fluid stream. In operation, reduced heavy metals or their oxides are recovered from the cathode particles.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: June 19, 2012
    Assignee: Eltron Research & Development, Inc.
    Inventor: Wayne E. Buschmann
  • Patent number: 8192608
    Abstract: An anode and cathode for an electrolytic cell configured as a low inductance transmission line to enable control of an interphase at an electrode surface. The anode and cathode are coupled to a switched current source by a low inductance path that includes a parallel plate transmission line, a coaxial transmission line, or both. The switched current source provides fast switching between current sources to provide fast charging and discharging of the double-layer capacitance associated with the electrode surface so that an isotope may be selectively transported to the electrode surface for oxidation or reduction. A photon source may be used to create a population of isotope containing species within the electrolyte. An additional static magnetic field and/or an alternating current magnetic excitation source may be used to modify the composition of the population of species containing the isotope to be separated.
    Type: Grant
    Filed: December 11, 2010
    Date of Patent: June 5, 2012
    Inventor: Mehlin Dean Matthews
  • Publication number: 20110120879
    Abstract: Apparatus and processes are disclosed for electrowinning metal from a fluid stream. A representative apparatus comprises at least one spouted bed reactor wherein each said reactor includes an anolyte chamber comprising an anode and configured for containing an anolyte, a catholyte chamber comprising a current collector and configured for containing a particulate cathode bed and a flowing stream of an electrically conductive metal-containing fluid, and a membrane separating said anolyte chamber and said catholyte chamber, an inlet for an electrically conductive metal-containing fluid stream; and a particle bed churning device configured for spouting particle bed particles in the catholyte chamber independently of the flow of said metal-containing fluid stream. In operation, reduced heavy metals or their oxides are recovered from the cathode particles.
    Type: Application
    Filed: March 19, 2008
    Publication date: May 26, 2011
    Applicant: ELTRON RESEARCH, INC.
    Inventor: Wayne E. Buschmann
  • Publication number: 20110079516
    Abstract: An anode and cathode for an electrolytic cell configured as a low inductance transmission line to enable control of an interphase at an electrode surface. The anode and cathode are coupled to a switched current source by a low inductance path that includes a parallel plate transmission line, a coaxial transmission line, or both. The switched current source provides fast switching between current sources to provide fast charging and discharging of the double-layer capacitance associated with the electrode surface so that an isotope may be selectively transported to the electrode surface for oxidation or reduction. A photon source may be used to create a population of isotope containing species within the electrolyte. An additional static magnetic field and/or an alternating current magnetic excitation source may be used to modify the composition of the population of species containing the isotope to be separated.
    Type: Application
    Filed: December 11, 2010
    Publication date: April 7, 2011
    Inventor: MEHLIN DEAN MATTHEWS
  • Patent number: 7842178
    Abstract: An electrically conducting electrode having a composite and a current collector in electrical contact with the composite, the composite can comprise at least about 10 weight percent electrically conductive particles, at least about 0.5 weight percent magnetic particles, and an optional polymeric binder, wherein composite is at least about 80 weight percent with respect to the combined weight of the electrically conductive particles, the magnetic particles and the binder. Electrochemical systems can effectively use these electrodes to improve system performance.
    Type: Grant
    Filed: April 17, 2006
    Date of Patent: November 30, 2010
    Assignee: University of Iowa Research Foundation
    Inventors: Johna Leddy, Angela Wolf, Drew Dunwoody, Wayne Gellett, Murat Ünlü
  • Publication number: 20100181204
    Abstract: The technology provides apparatus and methods for generating hydrogen without applying electrical energy from an outside source. An exemplary apparatus has an outer housing having an interior divided into an upper portion and a lower portion separated by a septum. The lower portion contains an electrolyte and a composite electrode at least partially immersed in the electrolyte. The electrolyte includes zinc hydroxide dissolved therein. The composite electrode has an aluminum tube enclosing at least one magnet. An outer surface of the electrode housing is at least partially covered with nano-particles held in place by magnetic attraction of the at least one magnet to form the electrode. The magnetically-adherent nano-particles form a second electrode, in direct contact with the first electrode. The generator apparatus has a vent in communication with the upper portion of the interior of the outer housing for removal of generated hydrogen.
    Type: Application
    Filed: January 21, 2010
    Publication date: July 22, 2010
    Inventor: Linnard Gene Griffin
  • Publication number: 20100143679
    Abstract: An article of manufacture and methods of making same. In one embodiment, the article of manufacture has a plurality of zinc oxide layers substantially in parallel, wherein each zinc oxide layer has a thickness d1, and a plurality of organic molecule layers substantially in parallel, wherein each organic molecule layer has a thickness d2 and a plurality of molecules with a functional group that is bindable to zinc ions, wherein for every pair of neighboring zinc oxide layers, one of the plurality of organic molecule layers is positioned in between the pair of neighboring zinc oxide layers to allow the functional groups of the plurality of organic molecules to bind to zinc ions in the neighboring zinc oxide layers to form a lamellar hybrid structure with a geometric periodicity d1+d2, and wherein d1 and d2 satisfy the relationship of d1?d2?3d1.
    Type: Application
    Filed: December 4, 2009
    Publication date: June 10, 2010
    Applicant: NORTHWESTERN UNIVERSITY
    Inventors: Samuel I. Stupp, Josh Goldberger, Marina Sofos
  • Publication number: 20100078332
    Abstract: The invention allows the formation of insoluble chemical compounds in a liquid medium by way of physical stimuli. Highly soluble salts are transformed into insoluble compounds so that they can be separated from aqueous solution to obtain a benefit from both the separated salts and the purified residual liquid.
    Type: Application
    Filed: September 28, 2009
    Publication date: April 1, 2010
    Inventors: Guillermo Gomez, Victor Silva
  • Publication number: 20100072074
    Abstract: A method for the electrolytic production of hydrogen where radiation excited water from a spent fuel pool of a nuclear power plant is delivered to one or more electrolysers where DC current is applied to pairs of electrodes in the electrolysers to form hydrogen and oxygen. The hydrogen is collected.
    Type: Application
    Filed: September 2, 2009
    Publication date: March 25, 2010
    Inventor: David E. Fowler
  • Patent number: 7658832
    Abstract: A method of stabilizing an electrolysis cell with a boundary, a liquid metal layer and an electrolyte layer having specific operational and geometric parameters, and comprises the steps of determining amplitude and frequency values for a desired external, time-varying and/or alternating magnetic field through wave reflection analysis on a theoretical wall whose parameters are representative of the cell wall's parameters; and imposing on said cell an external, time-varying and/or alternating magnetic field having substantially the same amplitude and frequency values determined in the wave reflection analysis so that the resultant magnetic field imposed on the cell tends to parametrically and dynamically desynchronize the occurrence of resonance instability near the cell's walls.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: February 9, 2010
    Assignee: Coventry University
    Inventors: Sergei Molokov, Alex Lukyanov, Gennady El
  • Patent number: 7097757
    Abstract: A new class of polymers with a highly ordered state having unique electrical, electronic, optical, ferromagnetic, piezoelectric, ionic, or superconducting properties are achieved. The polymers are highly crystalline, exhibiting both long and short range order, and an associated nanoscale lattice parameter. The polymers are fabricated by forming a conductive set of nanoscale waveguides (composed of functional molecules and charge carriers, i.e., polarons, bipolarons, superpolarons, spins, ions, copper pair electrons) throughout a polymer lattice. These “molecular waveguides” are characterized by a width or diameter comparable to the size of the lattice cell.
    Type: Grant
    Filed: July 30, 2002
    Date of Patent: August 29, 2006
    Assignee: Fractal Systems, Inc.
    Inventor: Matt Aldissi
  • Patent number: 6949179
    Abstract: The present invention is directed to methods for making magnetically modified electrodes and electrodes made according to the method. Such electrode are useful as electrodes in batteries, such as Ni-MH batteries, Ni—Cd batteries, Ni—Zn batteries and Ni—Fe batteries.
    Type: Grant
    Filed: April 3, 2003
    Date of Patent: September 27, 2005
    Assignee: University of Iowa Research Foundation
    Inventors: Johna Leddy, Shelley D. Minteer
  • Patent number: 6716331
    Abstract: An electrolytic method is disclosed by which occlusion of hydrogen or sticking of atoms or molecules in plating and so forth is not disturbed by electronic magnetic force produced by main electric current and ion current flowing from the positive electrode to the negative electrode through electrolyte. An electric circuit separate from a positive electrode and a negative electrode is provided between the positive electrode and the negative electrode, and electric current of a direction opposite to that of main electric current and ion current flowing in the electrolyte from the positive electrode to the negative electrode is supplied to the electric circuit to produce an opposite magnetic field which cancels a magnetic field produced by the main electric current and the ion current flowing in the electrolyte.
    Type: Grant
    Filed: July 12, 2001
    Date of Patent: April 6, 2004
    Inventor: Toichi Chikuma
  • Publication number: 20040026253
    Abstract: The present invention is directed to methods for making magnetically modified electrodes and electrodes made according to the method. Such electrode are useful as electrodes in batteries, such as Ni-MH batteries, Ni—Cd batteries, Ni—Zn batteries and Ni—Fe batteries.
    Type: Application
    Filed: April 3, 2003
    Publication date: February 12, 2004
    Inventors: Johna Leddy, Shelley D. Minteer
  • Publication number: 20040020785
    Abstract: An electrolytic cell for producing a chlor-alkali including at least two electrodes in reactive contact with an aqueous liquid containing a chloride salt, wherein at least one of the electrodes is within a magnetic field is described herein.
    Type: Application
    Filed: July 31, 2002
    Publication date: February 5, 2004
    Inventor: Shelley D. Minteer
  • Publication number: 20020029976
    Abstract: A reactor for removing impurities by electrochemcial means from liquids, such as aqueous solutions, and in which the liquid is passed through series of plateshaped reaction electrodes electrically insulated against each other with a liquid speed above a minimum to prevent dissociation into constituent gases, but sufficient to ensure interaction with an electrical current passing between the plateshaped electrodes. The latter has corrugated forms and/or their surfaces provided with embossed relief patterns to enhance the electrochemical effect between the electrodes. The reactor comprises one more interconnected units (A, B, C, D) with a series of plateshaped electrodes (1, 2) valve means (8) and holes (5, 6) in the plates for redirecting the liquid flow into and through the series of reaction electrodes (1, 2).
    Type: Application
    Filed: September 10, 2001
    Publication date: March 14, 2002
    Inventor: David Napper
  • Publication number: 20020005358
    Abstract: An electrolytic method is disclosed by which occlusion of hydrogen or sticking of atoms or molecules in plating and so forth is not disturbed by electronic magnetic force produced by main electric current and ion current flowing from the positive electrode to the negative electrode through electrolyte. An electric circuit separate from a positive electrode and a negative electrode is provided between the positive electrode and the negative electrode, and electric current of a direction opposite to that of main electric current and ion current flowing in the electrolyte from the positive electrode to the negative electrode is supplied to the electric circuit to produce an opposite magnetic field which cancels a magnetic field produced by the main electric current and the ion current flowing in the electrolyte.
    Type: Application
    Filed: July 12, 2001
    Publication date: January 17, 2002
    Applicant: TOICHI CHIKUMA
    Inventor: Toichi Chikuma
  • Patent number: 6146518
    Abstract: An improved process for providing hydrogen from an electrolytic cell having an anolyte solution having an anolyte liquid level; a catholyte solution having a catholyte liquid level; generating oxygen at an oxygen pressure above the anolyte level; generating hydrogen at a hydrogen pressure above the catholyte level; the improvement comprising detecting at least one of the anolyte and the catholyte liquid levels as anolyte level and catholyte level data; feeding the level data to central processing means; determining the pressure differential between the levels from the level data, and pressure adjustment data by the central processing means; and providing the adjustment data to pressure control means to maintain the pressure differential within a selected range. The process offers a low cost method of controlling the pressure differential to within 2 cm WC of a set point.
    Type: Grant
    Filed: September 1, 1999
    Date of Patent: November 14, 2000
    Assignee: Stuart Energy Systems Inc.
    Inventors: Matthew J. Fairlie, William J. Stewart, Charlie Dong
  • Patent number: 6036838
    Abstract: In order to improve a method for determining the substance conversion during areal electrochemical reactions in at least one local surface area between a counterelectrode arrangement of an areal design and an electrode arrangement of an areal design, which has a contact element segment designed in accordance with the surface area and a contact element contacting the remaining surface areas and being electrically insulated in relation to the contact element segment, in such a manner that the substance conversion can be determined in as simple a manner as possible it is suggested that not only the contact element but also the contact element segment be connected to one current source or current drain provided for carrying out the electrochemical reaction, that a current flowing between the contact element segment and the current source or current drain via a conductor generate a magnetic field around the conductor and that the magnetic field be determined as a measure for the substance conversion in the local s
    Type: Grant
    Filed: July 14, 1999
    Date of Patent: March 14, 2000
    Assignee: Deutsches Zentrum fuer Luft -und Raumfahrt e.V.
    Inventors: Christian Wieser, Axel Helmbold
  • Patent number: 5922488
    Abstract: The invention is directed towards a CO-tolerant fuel cell electrode formed from a carbon supported, platinum dispersed, non-stoichiometric hydrogen tungsten bronze electrode catalyst. The electrode catalyst is capable of oxidizing CO at very low potentials, and is sequentially formed from stable precursors.
    Type: Grant
    Filed: August 15, 1997
    Date of Patent: July 13, 1999
    Assignee: Exxon Research and Engineering Co.,
    Inventors: Elise Marucchi-Soos, David Terence Buckley, Richard James Bellows
  • Patent number: 5718819
    Abstract: In order to improve a process for the electrolysis of a fluid electrolyte containing cations and anions in an electrolytic cell with a cathode and an anode located opposite the cathode such that primary energy not present in an electrical form, in particular thermal energy from reservoirs having a moderately high temperature, can be used for the electrolysis with lower losses, it is suggested that a current path between the cathode and the anode be closed, that a magnetic field be applied to the electrolytic cell and that a relative movement between the magnetic field and the electrolyte be generated so that on account of the effect of Lorentz forces the cations migrate to the cathode and the anions to the anode and products of electrolysis be formed on the cathode and on the anode in electrolytic reactions, wherein the charge equalization necessary for the electrolytic reactions be carried out by the current path closed between the cathode and the anode.
    Type: Grant
    Filed: February 13, 1996
    Date of Patent: February 17, 1998
    Assignee: Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V.
    Inventors: Walter Peschka, Gottfried Schneider