Silicon, Boron, Or Phosphorus Containing Patents (Class 205/358)
  • Patent number: 9902622
    Abstract: A method for preparing zirconium boride and synchronously preparing a cryolite is provided which includes the following steps: Step A: placing aluminum in a reactor, heating the reactor to 700-850 degrees centigrade, and adding the mixture of fluorozirconate and fluoborate; and Step B: stirring the reactants for 4-6 hours and extracting the upper molten liquid to obtain a cryolite, wherein the lower substance is zirconium boride. The disclosure has the following beneficial effects: the new zirconium boride preparation method provided herein is simple in preparation flow and the device used, short in preparation period and high in reaction efficiency, the prepared zirconium boride with many contact angles has a large specific surface area and contains a controllable amount of aluminum.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: February 27, 2018
    Assignee: SHENZHEN SUNXING LIGHT ALLOYS MATERIALS CO., LTD.
    Inventors: Xuemin Chen, Jun Yang, Zhihong Li, Weiping Wu, Shiming Wei
  • Patent number: 8968547
    Abstract: A method for stabilizing a nuclear material may include electrolytically reducing the nuclear material in a first molten salt electrolyte of an electroreducer to produce a reduced material. A reducer waste may accumulate in the first molten salt electrolyte as a byproduct of the electroreduction. After the electroreduction, the reduced material may be electrolytically dissolved in a second molten salt electrolyte of an electrorefiner to produce a purified metal product on a refiner cathode assembly of the electrorefiner. As a result of the electrorefining, a first refiner waste may accumulate in the second molten salt electrolyte and a second refiner waste may accumulate in a refiner anode assembly of the electrorefiner. The reducer waste from the electroreducer and the first refiner waste from the electrorefiner may be converted into a ceramic waste form, while the second refiner waste from the electrorefiner may be converted into a metallic waste form.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: March 3, 2015
    Assignee: GE-Hitachi Nuclear Energy Americas LLC
    Inventors: Eric P. Loewen, John F. Berger
  • Publication number: 20130277227
    Abstract: An apparatus for producing pure silicon from an electrolyte including a first crucible for receiving the electrolyte, a heat source for heating the electrolyte in the first crucible to form a molten electrolyte, an anode and a cathode which are adapted for electrical/ionic communication with the molten electrolyte wherein electrolysis is able to be applied to the molten electrolyte when a potential difference is provided between the anode and the cathode. A stirring device is adapted for stirring the molten electrolyte when electrolysis is being applied whereby pure silicon is produced which is soluble with the anode to form an alloy.
    Type: Application
    Filed: December 20, 2011
    Publication date: October 24, 2013
    Applicant: EPRO DEVELOPMENT LIMITED
    Inventors: Albert Pui Sang Lau, Lee Cheung Lau
  • Patent number: 7790014
    Abstract: The present invention pertains to a method for removing a substance (X) from a solid metal or semi-metal compound (M1X) by electrolysis in a melt of M2Y, which comprises conducting the electrolysis under conditions such that reaction of X rather than M2 deposition occurs at a electrode surface, and that X dissolves in the electrolyte M2Y. The substance X is either removed from the surface (i.e., M1X) or by means of diffusion extracted from the case material. The temperature of the fused salt is chosen below the melting temperature of the metal M1. The potential is chosen below the decomposition potential of the electrolyte.
    Type: Grant
    Filed: February 12, 2004
    Date of Patent: September 7, 2010
    Assignee: Metalysis Limited
    Inventors: Derek John Fray, Thomas William Farthing, Zheng Chen
  • Patent number: 7776201
    Abstract: A method for regenerating chemical hydrides from metal oxides and electrochemical cell for use in carrying out the method. The electrochemical cell has a cathode side with molten salt and a cathode, and an anode electrode side with an anode. The cathode side and the anode side are separated by an oxygen anion-conducting membrane. A metal oxide is placed in the molten salt of the cathode side and an electrical potential is applied to the cathode and anode while feeding hydrogen to the cathode electrode to effectuate conversion of the metal oxide to a metal hydride and feeding hydrogen to the anode to generate water and free electrons.
    Type: Grant
    Filed: June 15, 2005
    Date of Patent: August 17, 2010
    Assignee: HRL Laboratories
    Inventors: John J. Vajo, Ping Liu
  • Patent number: 7338588
    Abstract: A method for the production of an intermetallic compound (M1Z) involves treating a solid precursor material comprising three or more species, including first and second metal or metalloid species (M1, Z) and a non-metal species (X), by electro-deoxidation in contact with a melt comprising a fused salt (M2Y) under conditions whereby the non-metal species dissolves in the melt. The first and second metal or metalloid species form an intermetallic compound. The method is performed in a cell comprising a cathode of the precursor material (2), which is immersed in a melt (8) contained in a crucible (6) for electro-deoxidation.
    Type: Grant
    Filed: November 15, 2001
    Date of Patent: March 4, 2008
    Assignee: Cambridge Enterprise Limited
    Inventors: Derek John Fray, Robert Charles Copcutt, George Zheng Chen
  • Patent number: 7338921
    Abstract: An electrode is steeped in a solution of Mg and B and a negative voltage is applied to the electrode so as to precipitate superconductive MgB2 on the electrode. Superconductive MgB2 is easily manufactured in various forms and at low costs without any special device.
    Type: Grant
    Filed: April 26, 2002
    Date of Patent: March 4, 2008
    Assignee: National Institute for Materials Science
    Inventors: Hideki Abe, Hideaki Kitazawa, Akiyuki Matsushita
  • Patent number: 7294250
    Abstract: A very small amount of copper chloride or zinc oxide is added to a mixture of magnesium chloride, potassium chloride, sodium chloride and magnesium borate, a mixed salt is melted under heat, electrodes are inserted into a molten salt and a metallic material employed as a cathode is electroplated with a magnesium diboride (MgB2) film.
    Type: Grant
    Filed: June 8, 2004
    Date of Patent: November 13, 2007
    Assignee: Japan Atomic Energy Research Institute
    Inventors: Hideki Abe, Hideaki Kitazawa, Kenji Yoshii, Junichiro Mizuki
  • Patent number: 7279077
    Abstract: A method of forming a chemical composition such as a chemical hydride is described and which includes the steps of selecting a composition having chemical bonds and which is capable of forming a chemical hydride; providing a source of hydrogen; and exposing the selected composition to an amount of ionizing radiation to encourage the changing of the chemical bonds of the selected composition, and chemically reacting the selected composition with the source of hydrogen to facilitate the formation of a chemical hydride.
    Type: Grant
    Filed: October 13, 2003
    Date of Patent: October 9, 2007
    Assignee: Bettelle Energy Alliance, LLC
    Inventors: Dennis N. Bingham, Bruce M. Wilding, Kerry M. Klingler, William T. Zollinger, Kraig M. Wendt
  • Publication number: 20070215483
    Abstract: The present invention relates to a method for electrolytic production and refining of metals having a melting point above about 1000° C., particularly silicon, where there is provided a first electrolytic cell having an upper molten electrolyte layer of a first electrolyte, a lower molten alloy layer of an alloy of the metal to be refined and at least one metal more noble than the metal to be refined. The lower alloy layer is the cathode in the first cell and an anode is positioned in the upper molten electrolyte layer. A second electrolytic cell is also provided with an upper molten metal layer of the same metal as the metal to be refined, said layer constituting a cathode, a lower molten alloy layer, said lower layer constituting an anode, said alloy having a higher density than the metal to be refined, and an intermediate molten electrolyte layer having a density between the density of the upper and lower molten layers.
    Type: Application
    Filed: March 6, 2007
    Publication date: September 20, 2007
    Applicant: ELKEM AS
    Inventors: Kai JOHANSEN, Donald R. SADOWAY, Bjorn MYHRE, Marianne ENGVOLL, Krister ENGVOLL
  • Patent number: 7108777
    Abstract: A process and electrolytic cell for reducing in an ionic alkali metal compound, the cell containing anode and cathode electrodes, by supplying an electrolyte containing the alkali metal compound to the cell, applying an electric voltage to the cell to reduce said alkali metal compound at the cathode, and passing hydrogen or a hydrogen containing gas to at least one electrode while the compound is reduced at the cathode.
    Type: Grant
    Filed: March 13, 2003
    Date of Patent: September 19, 2006
    Assignees: Millennium Cell, Inc., Air Products and Chemicals, Inc.
    Inventors: Jianguo Xu, Michael Kelly, Guido Pez, Ying Wu, Stefanie Sharp-Goldman
  • Patent number: 6974534
    Abstract: Process for preparing highly purified silicon and optionally aluminum and silumin (aluminum silicon alloy) in the same cell, wherein silicate and/or quartz containing rocks are subjected to electrolysis in a salt melt containing fluoride, whereby silicon and aluminum are formed in the same bath, and aluminum formed, which may be low alloyed, flow to the bottom and is optionally drawn off, and deposit formed on the cathode is removed from the cathode and crushed, optionally together with the remaining electrolysis bath, concentrated sulfuric acid and then hydrochloric acid and water are added to the crushed material, liberated Si-grains float to the surface and are taken out and treated further as desired.
    Type: Grant
    Filed: February 21, 2002
    Date of Patent: December 13, 2005
    Assignee: Norwegian Silicon Refinery AS
    Inventor: Jan Reidar Stubergh
  • Publication number: 20040238372
    Abstract: Electrolyte for the manufacture or refining of silicon at high temperatures, particularly suited for the manufacture of high grade silicon. The electrolyte is mainly formed from a salt melt of CaCl2 and CaO. The invention further concerns a method for the manufacture of silicon in a salt melt at a high temperature, in which quartz with a low content of phosphorus and boron is subjected to electrolysis in such a melt, and a method for the refining of silicon where the silicon to be refined is used as an alloy element for the anode used in an electrolytic cell including the melt defined above.
    Type: Application
    Filed: July 6, 2004
    Publication date: December 2, 2004
    Inventor: Espen Olsen
  • Publication number: 20030150744
    Abstract: A method for electrochemical synthesis of a superconducting boron compound MgB2 which comprises the steps of preparing a powder mixture of magnesium chloride, sodium chloride, potassium chloride and magnesium borate, drying the mixture by electrical heating at a temperature of 400° C. or below under an inert gas atmosphere, and further heating the mixture electrically at a temperature of 400° C. or above so that it is melted and undergoes chemical reaction.
    Type: Application
    Filed: February 12, 2003
    Publication date: August 14, 2003
    Applicant: Japan Atomic Energy Research Institute
    Inventors: Kenji Yoshii, Junichiro Mizuki, Hideki Abe, Hideaki Kitazawa, Akiyuki Matsushita
  • Patent number: 6436271
    Abstract: The aim of the present invention is a process for preparing a mineral matrix by melting, which is implemented according to the method of direct cold crucible induction melting. The method employs a step for initiating the melting. During the initiation step, a conductive mineral load is generated, by introduction of constituent elements of the matrix, into a bath of a conductive liquid, brought by induction to a suitable temperature, in the cold crucible. The intervening conductive liquid has the property of being a liquid and an electric conductor at a temperature between &thgr;1 of less than 600° C., advantageously of between 100 and 500° C., and a temperature &thgr;2 at least equal to the temperature at which the constituent elements of the matrix melt to generate the matrix. The conductive liquid is advantageously a molten sodium hydroxide bath. The preparation of such a glass matrix is advantageously implemented within the context of a method of vitrifying radioactive waste materials.
    Type: Grant
    Filed: July 15, 1999
    Date of Patent: August 20, 2002
    Assignee: Societe Generale pour les Techniques Nouvelles S.G.N.
    Inventors: Philippe Kalousdian, Patrick Cantin
  • Patent number: 6375913
    Abstract: An integrated system for producing high purity silicon dioxide comprising: a) a source of an oxygen-containing feed gas containing at least one impurity, b) an oxygen transport membrane cell containing an oxygen-selective transport membrane that has a cathode side and an opposing anode side, the membrane being at an elevated temperature effective for separation of oxygen in the feed gas from the impurity by transporting oxygen ions from the oxygen-containing feed gas through the membrane to the anode to form a purified oxygen permeate on the anodeside, while retaining an essentially oxygen-depleted, impurity-containing retentate on the cathode side, c) a passageway from the source (a) to the cathode side of the membrane cell, d) a silicon source, and e) a silicon oxidation furnace, in communication with the anode side of the membrane cell, for reaction of the purified oxygen permeate with silicon from the silicon source, at an elevated reaction temperature effective for the reaction, in order to produce the h
    Type: Grant
    Filed: April 10, 2000
    Date of Patent: April 23, 2002
    Assignee: Pranair Technology
    Inventors: Kevin Bruce Albaugh, Nitin Ramesh Keskar
  • Patent number: 5964913
    Abstract: The invention relates to a single phase vitreous material and to its production from a melt of a glass-forming multi-component feed mix. The process includes the preparation of a single phase melt in which there are mobile cations from a glass forming feed mix. The melt in passed in contacting relationship with and sequentially between devices made of low electrical resistance material from device to device. These devices are in and complete with the melt and a direct current voltage source an electric circuit. A voltage is regulated in the electrical circuit so that a direct electrical current is created in it and the concentration of the mobile cations in the melt is lowered thereby with reduction on the cathode of the metals of the same kind as the mobile cations. The melt, lowered concentration of the mobile cations, is cooled to produce the material as a structural article. In another embodiment, the anode is separated from the melt by a medium which is substantially inert with respect to the melt.
    Type: Grant
    Filed: September 19, 1997
    Date of Patent: October 12, 1999
    Assignee: Dynelec Corporation
    Inventors: Nikolai Fydorovich Titov, Sergei Vladimirovich Polyakov, Vitaly Romanovich Barabash, Alexander Georgievich Kolesnikov, Alexander Ivanovich Golovchenko, Pavel Vladimirobich Polyakov, Valerian Markovich Sobolev, Vasilly Sergeevich Skachko, Roy Donald Baldwin, Igor Mikhailovich Dunaev, Boris Petrovich Burylyov