Thorium Patents (Class 205/45)
  • Patent number: 9845542
    Abstract: According to an embodiment, a nuclear fuel material recovery method of recovering a nuclear fuel material containing thorium metal by reprocessing an oxide of a nuclear fuel material containing thorium oxide in a spent fuel is provided. The method has: a first electrolytic reduction step of electrolytically reducing thorium oxide in a first molten salt of alkaline-earth metal halide; a first reduction product washing step of washing a reduction product; and a main electrolytic separation step of separating the reduction product. The first molten salt further contains alkali metal halide, and contains at least one out of a group consisting of calcium chloride, magnesium chloride, calcium fluoride and magnesium fluoride. The method may further has a second electrolytic reduction step of electrolytically reducing uranium oxide, plutonium oxide, and minor actinoid oxide in a second molten salt of alkali metal halide.
    Type: Grant
    Filed: May 22, 2013
    Date of Patent: December 19, 2017
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yuya Takahashi, Koji Mizuguchi, Reiko Fujita, Hitoshi Nakamura, Shohei Kanamura, Naoki Kishimoto, Yoshikazu Matsubayashi, Takashi Oomori
  • Patent number: 7029568
    Abstract: A negative ion generating medium for generating negative ions from the surface of a mother material made of aluminum or aluminum alloy. The negative ion generating medium has the mother material of aluminum or aluminum alloy covered at the surface with an anodized layer on which a rare metal separated from a rare metal solution such as zirconium salt is deposited. As the rare metal is deposited in the pores provided in the anodized layer, its negative ion generating area can be increased thus releasing a large number of negative ions. The negative ion generating medium is manufactured by electrolytically processing the mother material in an electrolyte solution of sulfuric acid doped with a rare metal salt such as lithium salt to develop the anodized layer on the surface of the mother material and deposit the rare metal on the anodized layer.
    Type: Grant
    Filed: November 19, 2003
    Date of Patent: April 18, 2006
    Assignee: GHA Corporation
    Inventors: Yuichiro Matsuo, Takayasu Ikeda
  • Patent number: 5776330
    Abstract: Apparatus and methods for decontaminating surfaces are disclosed. A housing is configured with first and second channels and first and second fluid pathways in fluid communication therewith, respectively. First and second applicators are positioned within respective first and second channels and electrodes are electrically connected with the applicators. Electric current of a first polarity is supplied to a first applicator via the first electrode, and electric current of a second polarity is supplied to a second applicator via the second electrode. Decontaminating a surface comprises supplying a first fluid to a first applicator, supplying a second fluid to a second applicator, generating an electrical potential between the first and second applicators, and contacting the contaminated surface with the first and second applicators.
    Type: Grant
    Filed: May 8, 1996
    Date of Patent: July 7, 1998
    Assignee: Corpex Technologies, Inc.
    Inventor: Thomas F. D'Muhala
  • Patent number: 5752206
    Abstract: Processes for in-situ decontamination and recovery of metal from radioactive-contaminated metal which is contained in process equipment, including ancillary systems of process equipment, comprise two basic steps. In the first step, an acid decontamination solution is circulated through the equipment and in contact with the radioactive-contaminated metal for removing the radioactive contaminants and a first surface portion of the metal from the metal-containing equipment. In the second step, an acid digestion solution is circulated through the equipment for removing at least a second portion of the metal which is substantially free of radioactive contaminants. The present methods are particularly suitable for in-situ decontamination and recovery of nickel from radioactive-contaminated nickel diffusion barriers in the cascade converters of uranium gas diffusion plants.
    Type: Grant
    Filed: April 4, 1996
    Date of Patent: May 12, 1998
    Inventors: Neal A. Frink, Daniel D. Burns, Paul G. Frink, Amy Ciric
  • Patent number: 5633423
    Abstract: According to the invention, a consumable anode constituted by a metal alloy incorporates between 20 and 70 wt. % iron, between 20 and 40 wt. % cobalt and between 5 and 30 wt. % aluminium. To these basic constituents can optionally be added elements such as nickel and/or titanium and/or copper and/or niobium. The decontamination process involves an electrodissolution of said anode.
    Type: Grant
    Filed: June 12, 1995
    Date of Patent: May 27, 1997
    Assignee: Campagnie Generale des Matieres Nucleaires
    Inventors: Veronique Federici, Eric Tronche, Germain Lacoste