Uranium Containing Compound Produced Patents (Class 205/49)
  • Patent number: 10196749
    Abstract: Electrochemically reacting a lanthanide or actinide in solvent at a working electrode; wherein the solvent comprises an organic solvent such as acetonitrile which have a dielectric constant of at least three; wherein the solvent system further comprises an electrolyte; wherein the working electrode comprises an ionically conducting or permeable film such as a fluorosulfonate film; wherein at least one ligand such as triflate distinct from the ionically conducting or permeable film is present; wherein the ligand is chemically similar to a structure in the ionically conducting or ionically permeable film; and optionally wherein the electrochemical oxidation or reduction is carried out under the influence of a magnetic field which favorably enhances the reaction. Improved electrochemical methods, identification, and separation can be achieved.
    Type: Grant
    Filed: May 12, 2015
    Date of Patent: February 5, 2019
    Inventor: Johna Leddy
  • Patent number: 9039885
    Abstract: Disclosed are electrochemical cells and methods for producing a halide of a non-alkali metal and for electrorefining the halide. The systems typically involve an electrochemical cell having a cathode structure configured for dissolving a hydrogen halide that forms the halide into a molten salt of the halogen and an alkali metal. Typically a direct current voltage is applied across the cathode and an anode that is fabricated with the non-alkali metal such that the halide of the non-alkali metal is formed adjacent the anode. Electrorefining cells and methods involve applying a direct current voltage across the anode where the halide of the non-alkali metal is formed and the cathode where the non-alkali metal is electro-deposited. In a representative embodiment the halogen is chlorine, the alkali metal is lithium and the non-alkali metal is uranium.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: May 26, 2015
    Assignee: Consolidated Nuclear Security, LLC
    Inventors: Justin M. Holland, David M. Cecala
  • Patent number: 8968547
    Abstract: A method for stabilizing a nuclear material may include electrolytically reducing the nuclear material in a first molten salt electrolyte of an electroreducer to produce a reduced material. A reducer waste may accumulate in the first molten salt electrolyte as a byproduct of the electroreduction. After the electroreduction, the reduced material may be electrolytically dissolved in a second molten salt electrolyte of an electrorefiner to produce a purified metal product on a refiner cathode assembly of the electrorefiner. As a result of the electrorefining, a first refiner waste may accumulate in the second molten salt electrolyte and a second refiner waste may accumulate in a refiner anode assembly of the electrorefiner. The reducer waste from the electroreducer and the first refiner waste from the electrorefiner may be converted into a ceramic waste form, while the second refiner waste from the electrorefiner may be converted into a metallic waste form.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: March 3, 2015
    Assignee: GE-Hitachi Nuclear Energy Americas LLC
    Inventors: Eric P. Loewen, John F. Berger
  • Publication number: 20130186762
    Abstract: An in situ method for detecting alpha particles contained in a liquid medium, which uses a system which includes a counter-electrode and an alpha particle detector including a substrate made of an intrinsic semiconductor material sandwiched between two electrical contacts, wherein the contact intended to be in contact with the liquid medium is made of boron-doped diamond. By forming a particular electrolyte 8 and by causing a current to flow between counter-electrode and the boron-doped diamond contact in contact with the liquid medium, actinides or polonium present in the liquid medium may be concentrated on the boron-doped diamond contact, and by this means the detection limit of the alpha emitters may be lowered.
    Type: Application
    Filed: October 7, 2011
    Publication date: July 25, 2013
    Applicant: Commissariat A L'Energie Atomique et aux Energies Alternatives
    Inventors: Jacques De Sanoit, Christine Mer-Calfati, Michal Pomorski
  • Patent number: 8226910
    Abstract: A process for the extraction of uranium compounds from wet-process phosphoric acid includes lowering the iron concentration of the wet-process phosphoric acid and reducing the valency of any remaining ferric iron in the wet-process phosphoric acid to ferrous iron, and then extracting uranium compounds from the wet-process phosphoric acid. The process can include separating a side stream from a feed stream of wet-process phosphoric acid, wherein the side stream has a greater concentration of the uranium compounds than the feed stream by filtration. Extracting uranium compounds from the wet-process phosphoric acid can be by ion exchange process or by solvent extraction.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: July 24, 2012
    Assignee: Urtek, LLC
    Inventors: Nicholas Warwick Bristow, Mark S. Chalmers, James Andrew Davidson, Bryn Llywelyn Jones, Paul Robert Kucera, Nick Lynn, Peter Douglas Macintosh, Jessica Mary Page, Thomas Charles Pool, Marcus Worsley Richardson, Karin Helene Soldenhoff, Kelvin John Taylor, Colin Weyrauch
  • Patent number: 7879216
    Abstract: An anode and cathode for an electrolytic cell configured as a low inductance transmission line to enable control of an interphase at an electrode surface. The anode and cathode are coupled to a switched current source by a low inductance path that includes a parallel plate transmission line, a coaxial transmission line, or both. The switched current source provides fast switching between current sources to provide fast charging and discharging of the double-layer capacitance associated with the electrode surface so that an isotope may be selectively transported to the electrode surface for oxidation or reduction. A photon source may be used to create a population of isotope containing species within the electrolyte. An additional static magnetic field and/or an alternating current magnetic excitation source may be used to modify the composition of the population of species containing the isotope to be separated.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: February 1, 2011
    Inventor: Mehlin Dean Matthews
  • Patent number: 7744734
    Abstract: A high current density cathode for electrorefining in a molten electrolyte for the continuous production and collection of loose dendritic or powdery deposits. The high current density cathode eliminates the requirement for mechanical scraping and electrochemical stripping of the deposits from the cathode in an anode/cathode module. The high current density cathode comprises a perforated electrical insulated material coating such that the current density is up to 3 A/cm2.
    Type: Grant
    Filed: August 24, 2007
    Date of Patent: June 29, 2010
    Assignee: Battelle Energy Alliance, LLC
    Inventor: Shelly X. Li
  • Patent number: 7238270
    Abstract: The invention provides a process for dissolving actinic oxides, the process comprising performing the steps of (a) introducing the actinic oxides into a solution of nitric acid; (b) treating the acidic solution in order to substantially remove palladium; and (c) treating with divalent silver. Preferably, the actinic oxides are comprised in spent nuclear fuel. Optionally, the process comprises a second treatment of the acidic solution in order to substantially remove palladium and a second treatment with divalent silver. The steps may be performed on a batchwise or continuous basis. The treatment to remove palladium is preferably carried out by solvent extraction or ion exchange, and provides greatly improved rates of dissolution of oxides of plutonium. The treatment with divalent silver preferably involves the addition of a source of monovalent silver, followed by an electrolysis treatment to generate divalent silver.
    Type: Grant
    Filed: September 26, 2003
    Date of Patent: July 3, 2007
    Assignee: British Nuclear Fuels PLC
    Inventors: Peter Jonathan Watson Rance, Robert John Bernard
  • Patent number: 6767444
    Abstract: A new process for recycling spent nuclear fuels, in particular, mixed nitrides of transuranic elements and zirconium. The process consists of two electrorefiner cells in series configuration. A transuranic element such as plutonium is reduced at the cathode in the first cell, zirconium at the cathode in the second cell, and nitrogen-15 is released and captured for reuse to make transuranic and zirconium nitrides.
    Type: Grant
    Filed: August 26, 2002
    Date of Patent: July 27, 2004
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: William E. Miller, Michael K. Richmann
  • Patent number: 6736951
    Abstract: A waste treatment apparatus treats radioactive contaminated waste from a nuclear fuel material handling facility to decontaminate the radioactive contaminated waste by using an electrolytic molten salt, and reuses the electrolytic molten salt so that any effluents are not produced. Radioactive contaminated waste (10) from a nuclear fuel material handling facility is subjected to electrolysis by a molten salt electrolysis unit (20) to decontaminate the waste (10). The used salt (16) used for decontaminating the waste (10) is filtered to separate nuclear fuel materials (19) from the used salt (16). The filtered salt (18) is reused by the molten salt electrolysis unit (20). The salt adhering to the decontaminated waste (12) is recovered by an evaporating unit (59), and the recovered salt (15) is reused by the molten salt electrolysis unit (20).
    Type: Grant
    Filed: August 29, 2001
    Date of Patent: May 18, 2004
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Naruhito Kondo, Reiko Fujita
  • Patent number: 6299748
    Abstract: A waste treatment apparatus treats radioactive contaminated waste from a nuclear fuel material handling facility to decontaminate the radioactive contaminated waste by using an electrolytic molten salt, and reuses the electrolytic molten salt so that any effluents are not produced. Radioactive contaminated waste (10) from a nuclear fuel material handling facility is subjected to electrolysis by a molten salt electrolysis unit (20) to decontaminate the waste (10). The used salt (16) used for decontaminating the waste (10) is filtered to separate nuclear fuel materials (19) from the used salt (16). The filtered salt (18) is reused by the molten salt electrolysis unit (20). The salt adhering to the decontaminated waste (12) is recovered by an evaporating unit (59), and the recovered salt (15) is reused by the molten salt electrolysis unit (20).
    Type: Grant
    Filed: September 10, 1999
    Date of Patent: October 9, 2001
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Naruhito Kondo, Reiko Fujita
  • Patent number: 5650053
    Abstract: A cathode-anode arrangement for use in an electrolytic cell is adapted for electrochemically refining spent nuclear fuel from a nuclear reactor and recovering purified uranium for further treatment and possible recycling as a fresh blanket or core fuel in a nuclear reactor. The arrangement includes a plurality of inner anodic dissolution baskets that are each attached to a respective support rod, are submerged in a molten lithium halide salt, and are rotationally displaced. An inner hollow cylindrical-shaped cathode is concentrically disposed about the inner anodic dissolution baskets. Concentrically disposed about the inner cathode in a spaced manner are a plurality of outer anodic dissolution baskets, while an outer hollow cylindrical-shaped is disposed about the outer anodic dissolution baskets. Uranium is transported from the anode baskets and deposited in a uniform cylindrical shape on the inner and outer cathode cylinders by rotating the anode baskets within the molten lithium halide salt.
    Type: Grant
    Filed: November 24, 1995
    Date of Patent: July 22, 1997
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Eddie C. Gay, William E. Miller, James J. Laidler