Carbon Containing Compound Produced Patents (Class 205/555)
  • Publication number: 20140251822
    Abstract: A NaSICON cell is used to convert carbon dioxide into a usable, valuable product. In general, this reaction occurs at the cathode where electrons are used to reduce the carbon dioxide, in the presence of water and/or hydrogen gas, to form formate, methane, ethylene, other hydrocarbons and/or other chemicals. The particular chemical that is formed depends upon the reaction conditions, the voltage applied, etc.
    Type: Application
    Filed: March 5, 2014
    Publication date: September 11, 2014
    Applicant: Ceramatec, Inc.
    Inventors: Sai Bhavaraju, James Mosby
  • Patent number: 8821709
    Abstract: Methods and systems for electrochemically generating an oxidation product and a reduction product may include one or more operations including, but not limited to: receiving a feed of at least one organic compound into an anolyte region of an electrochemical cell including an anode; at least partially oxidizing the at least one organic compound at the anode to generate at least carbon dioxide; receiving a feed including carbon dioxide into a catholyte region of the electrochemical cell including a cathode; and at least partially reducing carbon dioxide to generate a reduction product at the cathode.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: September 2, 2014
    Assignee: Liquid Light, Inc.
    Inventors: Kyle Teamey, Jerry J. Kaczur, Narayanappa Sivasankar, Paul Majsztrik, Emily Barton Cole, Andrew B. Bocarsly
  • Publication number: 20140238871
    Abstract: A method for electrochemical production of synthesis gas from carbon dioxide is disclosed. The method generally includes steps (A) to (C). Step (A) may bubble the carbon dioxide into a solution of an electrolyte and a catalyst in a divided electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode generally reduces the carbon dioxide into a plurality of components. Step (B) may establish a molar ratio of the components in the synthesis gas by adjusting at least one of (i) a cathode material and (ii) a surface morphology of the cathode. Step (C) may separate the synthesis gas from the solution.
    Type: Application
    Filed: April 16, 2014
    Publication date: August 28, 2014
    Applicant: Liquid Light, Inc.
    Inventors: Narayanappa Sivasankar, Emily Barton Cole, Kyle Teamey
  • Patent number: 8815074
    Abstract: A method for reducing carbon dioxide with use of a device for reducing carbon dioxide includes steps of (a) preparing the device. The device includes a vessel, a cathode electrode and an anode electrode. An electrolytic solution is stored in the vessel, the cathode electrode contains a copper rubeanate metal organic framework, the copper rubeanate metal organic framework is in contact with the electrolytic solution, the anode electrode is in contact with the electrolytic solution, and the electrolytic solution contains carbon dioxide. The method further includes step of (b) applying a voltage difference between the cathode electrode and the anode electrode so as to reduce the carbon dioxide.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: August 26, 2014
    Assignee: Panasonic Corporation
    Inventors: Reiko Taniguchi, Satoshi Yotsuhashi
  • Publication number: 20140216944
    Abstract: A graphite oxide or graphene preparation method includes providing a plasma electrolytic apparatus, where an electrolytic solution is provided and a graphite electrode is configured as a cathode of the plasma electrolytic apparatus; and providing a cathodic current so as to initiate a plasma electrolytic process at the graphite cathode to obtain graphite oxide or graphene. The graphite oxide can be synthesized through plasma electrolytic processing at relatively low temperature under atmospheric pressure within a very short period of time, without the need for concentrated acids or strong oxidizing agents. The present invention may prepare graphite oxide with plasma electrolytic process directly from graphite, without requiring any prior purification. This plasma electrolytic process of the present invention is quite promising and provided with advantages such as low cost, simple setup, high efficiency, and environmental friendliness.
    Type: Application
    Filed: August 6, 2013
    Publication date: August 7, 2014
    Applicant: NATIONAL CHIAO TUNG UNIVERSITY
    Inventors: KUNG-HWA WEI, VAN THANH DANG
  • Publication number: 20140202874
    Abstract: The embodiments herein relate to methods and apparatus for forming graphitic material from a carbon oxide feedstock in an electroplating chamber containing molten inorganic carbonate as electrolyte. Carbon dioxide flows into a reaction chamber containing one or more cathodes, one or more anodes, and a molten carbonate electrolyte. The carbon dioxide and/or carbonate reduces at the cathode to form graphitic material, which may be removed from the surface of the cathode through various mechanisms. The graphitic material is then separated out from the electrolyte.
    Type: Application
    Filed: July 24, 2013
    Publication date: July 24, 2014
    Applicant: Saratoga Energy Research Partners, LLC
    Inventors: Ramez A. Elgammal, Franck Samuel Germain Falgairette, Drew L. Reid, Kenneth Reid
  • Patent number: 8721866
    Abstract: A method for electrochemical production of synthesis gas from carbon dioxide is disclosed. The method generally includes steps (A) to (C). Step (A) may bubble the carbon dioxide into a solution of an electrolyte and a catalyst in a divided electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode generally reduces the carbon dioxide into a plurality of components. Step (B) may establish a molar ratio of the components in the synthesis gas by adjusting at least one of (i) a cathode material and (ii) a surface morphology of the cathode. Step (C) may separate the synthesis gas from the solution.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: May 13, 2014
    Assignee: Liquid Light, Inc.
    Inventors: Narayanappa Sivasankar, Emily Barton Cole, Kyle Teamey
  • Publication number: 20140107326
    Abstract: Embodiments relating to the synthesis and processing of graphene molecules are provided. In some cases, methods for the electrochemical expansion and/or functionalization of graphene molecules are provided. In some embodiments, one or more species may be intercalated between adjacent graphene sheets.
    Type: Application
    Filed: March 7, 2013
    Publication date: April 17, 2014
    Applicant: Massachusetts Institute of Technology
    Inventor: Massachusetts Institute of Technology
  • Patent number: 8691069
    Abstract: The present disclosure is a system and method for producing a first product from a first region of an electrochemical cell having a cathode and a second product from a second region of the electrochemical cell having an anode. The method may include a step of contacting the first region with a catholyte including carbon dioxide and contacting the second region with an anolyte including a recycled reactant. The method may further include applying an electrical potential between the anode and the cathode sufficient to produce carbon monoxide recoverable from the first region and a halogen recoverable from the second region.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: April 8, 2014
    Assignee: Liquid Light, Inc.
    Inventors: Kyle Teamey, Jerry J. Kaczur, Robert Page Shirtum
  • Publication number: 20140093799
    Abstract: Electrochemical devices for converting carbon dioxide to useful reaction products include a solid or a liquid with a specific pH and/or water content. Chemical processes using the devices are also disclosed, including processes to produce CO, HCO?, H2CO, (HCO2), H2CO2, CH3OH, CH4, C2H4, CH3CH2OH, CH3COO?, CH3COOH, C2H6, (COOH)2, (COO?)2, acrylic acid, diphenyl carbonate, other carbonates, other organic acids and synthetic fuels. The electrochemical device can be a CO2 sensor.
    Type: Application
    Filed: September 24, 2013
    Publication date: April 3, 2014
    Inventors: Richard I. Masel, Brian A. Rosen, Wei Zhu
  • Publication number: 20140061059
    Abstract: A method of producing graphene by the electrochemical insertion of alkylammonium cations in a solvent into graphite is disclosed.
    Type: Application
    Filed: March 9, 2012
    Publication date: March 6, 2014
    Applicant: THE UNIVERSITY OF MANCHESTER
    Inventors: Robert Angus William Dryfe, Ian Anthony Kinloch
  • Patent number: 8658016
    Abstract: Methods and systems for capture of carbon dioxide and electrochemical conversion of the captured carbon dioxide to organic products are disclosed. A method may include, but is not limited to, steps (A) to (C). Step (A) may introduce a solvent to a first compartment of an electrochemical cell. Step (B) may capture carbon dioxide with at least one of guanidine, a guanidine derivative, pyrimidine, or a pyrimidine derivative to form a carbamic zwitterion. Step (C) may apply an electrical potential between an anode and a cathode sufficient for the cathode to reduce the carbamic zwitterion to a product mixture.
    Type: Grant
    Filed: July 5, 2012
    Date of Patent: February 25, 2014
    Assignee: Liquid Light, Inc.
    Inventors: Prasad Lakkaraju, Kyle Teamey
  • Publication number: 20140048422
    Abstract: A personal protection arrangement in a vehicle includes a gas generator for fluid communication with a reservoir and a control unit. The control unit is arranged to activate the gas generator upon fulfillment of at least one predetermined criterion such that gas is released by the gas generator into the reservoir and the pressure in the reservoir is increased. The gas generator comprises at least one electrochemical cell which is arranged to generate gas when the electrical status of the electrochemical cell is changed from a first state to a second state by a state-changing action.
    Type: Application
    Filed: August 15, 2013
    Publication date: February 20, 2014
    Applicant: AUTOLIV DEVELOPMENT AB
    Inventors: Mats JOHANSON, David STURK
  • Patent number: 8647493
    Abstract: The present disclosure is a system and method for producing a first product from a first region of an electrochemical cell having a cathode and a second product from a second region of the electrochemical cell having an anode. The method may include a step of contacting the first region with a catholyte comprising carbon dioxide. The method may include another step of contacting the second region with an anolyte comprising a recycled reactant. The method may include a step of applying an electrical potential between the anode and the cathode sufficient to produce a first product recoverable from the first region and a second product recoverable from the second region. The second product may be removed from the second region and introduced to a secondary reactor. The method may include forming the recycled reactant in the secondary reactor.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: February 11, 2014
    Assignee: Liquid Light, Inc.
    Inventors: Kyle Teamey, Jerry J. Kaczur
  • Publication number: 20140034506
    Abstract: Methods and systems for electrochemically generating an oxidation product and a reduction product may include one or more operations including, but not limited to: receiving a feed of at least one organic compound into an anolyte region of an electrochemical cell including an anode; at least partially oxidizing the at least one organic compound at the anode to generate at least carbon dioxide; receiving a feed including carbon dioxide into a catholyte region of the electrochemical cell including a cathode; and at least partially reducing carbon dioxide to generate a reduction product at the cathode.
    Type: Application
    Filed: September 25, 2013
    Publication date: February 6, 2014
    Applicant: Liquid Light, Inc.
    Inventors: Kyle Teamey, Jerry J. Kaczur, Narayanappa Sivasankar, Paul Majsztrik, Emily Barton Cole, Andrew B. Bocarsly
  • Patent number: 8641885
    Abstract: Disclosed is a system and method for reducing carbon dioxide into a carbon based product. The system includes an electrochemical cell having a cathode region which includes a cathode and a non-aqueous catholyte; an anode region having an anode and an aqueous or gaseous anolyte; and an ion permeable zone disposed between the anode region and the cathode region. The ion permeable zone is at least one of (i) the interface between the anolyte and the catholyte, (ii) an ion selective membrane; (iii) at least one liquid layer formed of an emulsion or (iv) a hydrophobic or glass fiber separator. The system and method includes a source of energy, whereby applying the source of energy across the anode and cathode reduces the carbon dioxide and produces an oxidation product.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: February 4, 2014
    Assignee: Liquid Light, Inc.
    Inventors: Narayanappa Sivasankar, Jerry J. Kaczur, Emily Barton Cole
  • Publication number: 20140027299
    Abstract: Processes for forming expanded hexagonal layered minerals (HLMs) and derivatives thereof using electrochemical charging are disclosed. The process includes employing HLM rocks (20) as electrodes (100) immersed in an electrolytic slurry (50) that includes an organic solvent, metal ions and expanded HLM (24). The electrolysis introduces organic solvent and ions from the metal salt from the slurry into the interlayer spacings that separate the atomic interlayers of the HLM rock, thereby forming 1st-stage charged HLM that exfoliates from the HLM rock. The process includes expanding the electrochemically 1st-stage charged HLM by applying an expanding force.
    Type: Application
    Filed: November 22, 2012
    Publication date: January 30, 2014
    Inventors: Kian Ping Loh, Junzhong Wang, Gordon Chiu
  • Patent number: 8617375
    Abstract: The method for reducing carbon dioxide of the present invention includes a step (a) and a step (b) as follows. A step (a) of preparing an electrochemical cell. The electrochemical cell comprises a working electrode (21), a counter electrode (23) and a vessel (28). The vessel (28) stores an electrolytic solution (27). The working electrode (21) contains boron carbide. The electrolytic solution (27) contains carbon dioxide. The working electrode (21) and the counter electrode (23) are in contact with the electrolytic solution (27). A step (b) of applying a negative voltage and a positive voltage to the working electrode and the counter electrode, respectively, to reduce the carbon dioxide.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: December 31, 2013
    Assignee: Panasonic Corporation
    Inventors: Yuji Zenitani, Masahiro Deguchi, Satoshi Yotsuhashi, Reiko Taniguchi
  • Patent number: 8597488
    Abstract: The method for reducing carbon dioxide of the present disclosure includes a step (a) and a step (b) as follows. A step (a) of preparing an electrochemical cell. The electrochemical cell comprises a working electrode, a counter electrode and a vessel. The vessel stores an electrolytic solution. The working electrode contains at least one nitride selected from the group consisting of titanium nitride, zirconium nitride, hafnium nitride, tantalum nitride, molybdenum nitride and iron nitride. The electrolytic solution contains carbon dioxide. The working electrode and the counter electrode are in contact with the electrolytic solution. A step (b) of applying a negative voltage and a positive voltage to the working electrode and the counter electrode, respectively, to reduce the carbon dioxide.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: December 3, 2013
    Assignee: Panasonic Corporation
    Inventors: Masahiro Deguchi, Yuji Zenitani, Reiko Taniguchi, Satoshi Yotsuhashi
  • Patent number: 8596047
    Abstract: The vehicle electrocatalyzer for recycling carbon dioxide to fuel hydrocarbons includes a main tubular member having a plurality of tubular catalytic cells, electrically connected in series disposed inside and separated from one another by semipermeable membranes allowing the passage of fluids, but not solids. The electrocatalyzer can be attached in the exhaust system where hydrogen could be generated by the electrolysis of water. Metallic copper, iron, carbonaceous materials (such as activated carbon, carbon nanomaterials, or graphite), metal oxides, or metal-supported catalysts may be used in each catalytic cell. A DC current connected across the cells is used to initiate reaction of the carbon dioxide with hydrogen gas. The resulting hydrocarbons are recycled back to the vehicle engine and used as a makeup fuel.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: December 3, 2013
    Assignees: King Fahd University of Petroleum and Minerals, King Abdulaziz City for Science and Technology
    Inventors: Reyad Awwad Khalaf Shawabkeh, Abdalla Mahmoud Abulkibash, Muhammad A. Al-Saleh
  • Patent number: 8591718
    Abstract: A method and apparatus for producing a carbon monoxide containing product in which cathode and anode sides of an electrically driven oxygen separation device are contacted with carbon dioxide and a reducing agent, respectively. The carbon dioxide is reduced to carbon monoxide through ionization of oxygen and the reducing agent lowers the partial pressure of oxygen at the anode side to partially drive oxygen ion transport within the device through the consumption of the oxygen and to supply heat. The lowering of oxygen partial pressure reduces voltage and therefore, electrical power required to be applied to the device and the heat is supplied to heat the device to an operational temperature and to the reduction of the carbon dioxide occurring at the cathode side. The device can be used as part of an integrated apparatus in which the carbon dioxide is supplied from a waste stream of a process plant.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: November 26, 2013
    Assignee: Praxair Technology, Inc.
    Inventors: Jonathan Andrew Lane, Gervase Maxwell Christie, Dante Patrick Bonaquist
  • Publication number: 20130299359
    Abstract: The present invention discloses a method for fabricating graphene, and comprises at least the following steps. First, a first electrode and a second electrode are inserted into an electrolyte without contacting. The first electrode is graphite, and the electrolyte comprises at least an ionic liquid. A potential difference will be produced between the first electrode and the second electrode to let the ionic liquid enter into each layer of the first electrode to form a plurality of graphene.
    Type: Application
    Filed: May 3, 2013
    Publication date: November 14, 2013
    Applicant: NATIONAL TSING HUA UNIVERSITY
    Inventors: YONG-CHIEN LING, CHIH-PING WANG, JEN-YU LIU
  • Publication number: 20130292262
    Abstract: A method for purification of carbon dioxide from a mixture of gases is disclosed. The method generally includes steps (A) and (B). Step (A) may bubble the gases into a solution of an electrolyte and a catalyst in an electrochemical cell. The electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode generally reduces the carbon dioxide into one or more compounds. The anode may oxidize at least one of the compounds into the carbon dioxide. Step (B) may separate the carbon dioxide from the solution.
    Type: Application
    Filed: June 21, 2013
    Publication date: November 7, 2013
    Inventors: Kyle Teamey, Emily Barton Cole, Narayanappa Sivasankar, Andrew B. Bocarsly
  • Patent number: 8524067
    Abstract: A method of producing nano-scaled graphene platelets with an average thickness smaller than 30 nm from a layered graphite material. The method comprises (a) forming a carboxylic acid-intercalated graphite compound by an electrochemical reaction; (b) exposing the intercalated graphite compound to a thermal shock to produce exfoliated graphite; and (c) subjecting the exfoliated graphite to a mechanical shearing treatment to produce the nano-scaled graphene platelets. Preferred carboxylic acids are formic acid and acetic acid. The exfoliation step in the instant invention does not involve the evolution of undesirable species, such as NOx and SOx, which are common by-products of exfoliating conventional sulfuric or nitric acid-intercalated graphite compounds. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.
    Type: Grant
    Filed: July 27, 2007
    Date of Patent: September 3, 2013
    Assignee: Nanotek Instruments, Inc.
    Inventors: Aruna Zhamu, Joan Jang, Bor Z. Jang
  • Publication number: 20130206605
    Abstract: Apparatus for seawater acidification including an ion exchange, cathode and anode electrode compartments and cation-permeable membranes that separate the electrode compartments from the ion exchange compartment. Means is provided for feeding seawater through the ion exchange compartment and for feeding a dissociable liquid media through the anode and cathode electrode compartments. A cathode is located in the cathode electrode compartment and an anode is located in the anode electrode compartment and a means for application of current to the cathode and anode is provided. A method for the acidification of seawater by subjecting the seawater to an ion exchange reaction to exchange H+ ions for Na+ ions. Carbon dioxide may be extracted from the acidified seawater. Optionally, the ion exchange reaction can be conducted under conditions which produce hydrogen as well as carbon dioxide. The carbon dioxide and hydrogen may be used to produce hydrocarbons.
    Type: Application
    Filed: March 15, 2013
    Publication date: August 15, 2013
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Felice DiMascio, Dennis R. Hardy, Heather D. Willauer, M. Kathleen Lewis, Frederick Williams
  • Patent number: 8501129
    Abstract: The subject of the invention is a method for reduction of the CO2 content of flue and atmospheric gases and equipment for application of the method. The characteristic of the solution according to the invention is, that “hydroxide” ionized water containing (OH?) ions of alkaline characteristics is used as reaction medium for binding carbon dioxide (CO2) gas, and carbon dioxide (CO2) gas gets into reaction with alkaline ionized water, and during the reaction from the carbon dioxide (CO2) gas and water, carbonate ion (CO32?) and hydrogencarbonate/bicarbonate (2HCO3?) are formed, and they leave for the outside atmosphere and/or outside water with the bound CO2 content in stable gas or liquid form.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: August 6, 2013
    Inventor: Ferenc Meszaros
  • Patent number: 8500987
    Abstract: A method for purification of carbon dioxide from a mixture of gases is disclosed. The method generally includes steps (A) and (B). Step (A) may bubble the gases into a solution of an electrolyte and a catalyst in an electrochemical cell. The electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode generally reduces the carbon dioxide into one or more compounds. The anode may oxidize at least one of the compounds into the carbon dioxide. Step (B) may separate the carbon dioxide from the solution.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: August 6, 2013
    Assignee: Liquid Light, Inc.
    Inventors: Kyle Teamey, Emily Barton Cole, Narayanappa Sivasankar, Andrew Bocarsly
  • Publication number: 20130161199
    Abstract: An apparatus for large-scale production of graphene and graphene oxide is provided. The apparatus includes a first electrode, a second electrode, an electrobath, a power supply, and a module for filtering and separating the graphene products. Large amounts of graphene and graphene oxide can be produced rapidly using electrochemical exfoliation. High-quality graphene and graphene oxide can be produced under the room temperature in a simple and cost-effective way.
    Type: Application
    Filed: December 17, 2012
    Publication date: June 27, 2013
    Applicant: ACADEMIA SINICA
    Inventor: Academia Sinica
  • Publication number: 20130157174
    Abstract: Electrocatalysts for carbon dioxide conversion include at least one catalytically active element with a particle size above 0.6 nm. The electrocatalysts can also include a Helper Catalyst. The catalysts can be used to increase the rate, modify the selectivity or lower the overpotential of electrochemical conversion of CO2. Chemical processes and devices using the catalysts also include processes to produce CO, HCO?, H2CO, (HCO2)?, H2CO2, CH3OH, CH4, C2H4, CH3CH2OH, CH3COO?, CH3COOH, C2H6, (COOH)2, or (COO?)2, and a specific device, namely, a CO2 sensor.
    Type: Application
    Filed: April 12, 2012
    Publication date: June 20, 2013
    Inventors: Richard I. Masel, Amin Salehi-Khojin
  • Publication number: 20130140187
    Abstract: The present disclosure is a system and method for producing a first product from a first region of an electrochemical cell having a cathode and a second product from a second region of the electrochemical cell having an anode. The method may include the step of contacting the first region of the electrochemical cell with a catholyte comprising an alcohol and carbon dioxide. Another step of the method may include contacting the second region of the electrochemical cell with an anolyte comprising the alcohol. Further, the method may include a step of applying an electrical potential between the anode and the cathode sufficient to produce a first product recoverable from the first region and a second product recoverable from the second region.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 6, 2013
    Applicant: LIQUID LIGHT, INC.
    Inventor: LIQUID LIGHT, INC.
  • Publication number: 20130118910
    Abstract: Methods and systems for electrochemically generating an oxidation product and a reduction product may include one or more operations including, but not limited to: receiving a feed of at least one organic compound into an anolyte region of an electrochemical cell including an anode; at least partially oxidizing the at least one organic compound at the anode to generate at least carbon dioxide; receiving a feed including carbon dioxide into a catholyte region of the electrochemical cell including a cathode; and at least partially reducing carbon dioxide to generate a reduction product at the cathode.
    Type: Application
    Filed: December 21, 2012
    Publication date: May 16, 2013
    Applicant: LIQUID LIGHT, INC.
    Inventor: LIQUID LIGHT, INC.
  • Patent number: 8409420
    Abstract: The oxalic acid aqueous solution filled in an electrolytic tank is electrolyzed with an electrolyzer to produce carbonic acid gas, while ultrasonic wave from an ultrasonic generator is applied to the produced carbonic acid gas bubbles, to form micro bubbles, which is dissolved in said oxalic acid aqueous solution, so as to easily produce carbonic acid gas solution with micro carbonic acid gas bubbles dissolved at a low cost; said carbonic acid gas solution can substitute carbonated spring.
    Type: Grant
    Filed: June 8, 2006
    Date of Patent: April 2, 2013
    Assignee: Omsi Co., Ltd.
    Inventors: Yoh Sano, Masahiko Asano, Hitoshi Yagi
  • Publication number: 20130075273
    Abstract: A device that can produce carbon monoxide for therapeutic and laboratory applications is disclosed. The device includes and electrochemical cell that converts carbon dioxide or a carbon dioxide containing molecule such as a carbonate or bicarbonate or bicarbonate into carbon monoxide and oxygen. The cell contains additives so pure carbon monoxide is obtained.
    Type: Application
    Filed: September 28, 2012
    Publication date: March 28, 2013
    Applicant: DIOXIDE MATERIALS, INC
    Inventor: Dioxide Materials, Inc
  • Patent number: 8313637
    Abstract: A wear of an electrode is prevented as much as possible, thereby efficiently electrolyzing a sulfuric acid solution and the like. An electrolysis method includes: passing an electrolytic solution through an electrolysis cell including at least a pair of an anode and a cathode; and supplying the electrodes with an electric power, so as to electrolyze the electrolytic solution, wherein a viscosity of the electrolytic solution is set in a range in response to a current density upon the electric power supply to carry out the electrolysis. The viscosity of a sulfuric acid solution as the electrolytic solution is equal to or less than 10 cP when the current density is equal to or less than 50 A/dm2, the viscosity of the sulfuric acid solution is equal to or less than 8 cP when the current density is from more than 50 to 75 A/dm2, and the viscosity of the sulfuric acid solution is equal to or less than 6 cP when the current density is from more than 75 to 100 A/dm2.
    Type: Grant
    Filed: December 26, 2008
    Date of Patent: November 20, 2012
    Assignee: Kurita Water Industries Ltd.
    Inventors: Minoru Uchida, Tatsuo Nagai, Shunichi Kanamori
  • Patent number: 8273236
    Abstract: A first aqueous solution filled in an electrolytic cell (2) is electrolyzed by applying DC voltage between the electrodes 7a and 7b in said electrolytic cell 2, to form an oxidation field short of electrons in said aqueous solution; and then, a second aqueous solution with carboxylic acid dissolved in it is mixed into the first aqueous solution in oxidation field state, so that the first aqueous solution in oxidation field state obtains electrons and is deoxidized, and the carboxylic acid is oxidized, to produce carbonic acid gas in said aqueous solution. Therefore, the present invention can be used to produce carbonic acid gas solution at a low cost easily.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: September 25, 2012
    Assignee: Omsi Co., Ltd.
    Inventors: Yoh Sano, Masahiko Asano, Hitoshi Yagi
  • Publication number: 20120228150
    Abstract: Oxygen Deficient Ferrites (ODF) electrodes integrated with Yttria Stabilized Zirconia (YSZ) electrolyte, electrochemically decompose carbon dioxide (CO2) into carbon (C)/carbon monoxide (CO) and oxygen (O2) in a continuous process. The ODF electrodes can be kept active by applying a small potential bias across the electrodes. CO2 and water (H2O) can also be electrolyzed simultaneously to produce syngas (H2+CO) and O2 continuously that can be fed back to the oxy-fuel combustion. With this approach, CO2 can be transformed into a valuable fuel source allowing CO2 neutral use of the hydrocarbon fuels.
    Type: Application
    Filed: March 8, 2011
    Publication date: September 13, 2012
    Inventors: Bruce S. Kang, Huang Guo, Gulfam Iqbal
  • Publication number: 20120175269
    Abstract: Methods and systems for electrochemical reduction of carbon dioxide using advanced aromatic amine heterocyclic catalysts are disclosed. A method for electrochemical reduction of carbon dioxide may include, but is not limited to, steps (A) to (C). Step (A) may introduce water to a first compartment of an electrochemical cell. Said first compartment may include an anode. Step (B) may introduce carbon dioxide to a second compartment of said electrochemical cell. Said second compartment may include a solution of an electrolyte, a catalyst, and a cathode. Said catalyst may include at least two aromatic amine heterocycles that are at least one of (a) fused or (b) configured to become electronically conjugated upon one electron reduction. Step (C) may apply an electrical potential between said anode and said cathode in said electrochemical cell sufficient for said cathode to reduce said carbon dioxide to a product mixture.
    Type: Application
    Filed: December 30, 2011
    Publication date: July 12, 2012
    Applicant: LIQUID LIGHT, INC.
    Inventors: Andrew B. Bocarsly, Amanda Morris, Prasad Lakkaraju, Raymond Dominey
  • Patent number: 8182658
    Abstract: An anode 20 of an electrochemical device 10 is connected to the cathode of a battery 30, and a cathode 22 of the electrochemical device 10 is connected to the anode of the battery. An electrolyte layer 24 containing electrolytes is arranged between the anode 20 and the cathode 22. Electrolyte layer 24 is formed by alternately laminating two types of electrolytes formed in the shape of plates. A first electrolyte is a proton conductor 26, and a second electrolyte is an oxygen ion conductor 28. A purification apparatus 120 includes a plurality of electrochemical devices 10.
    Type: Grant
    Filed: November 20, 2008
    Date of Patent: May 22, 2012
    Assignee: Kabushiki Kaisha Toyota Jidoshokki
    Inventors: Naotaka Koide, Nami Ikeda, Hiroyasu Kawauchi, Yoshifumi Kato
  • Patent number: 8168048
    Abstract: A CO2 generating and dispensing device having container with a first space for receiving oxalic acid and water, and a second space for receiving a CO2 generator which generator is attached to a lid. The lid secures to the container. Two conductive rods extend above the lid and are attached to the CO2 generator. Electric current is applied to the rods which initiates the CO2 generation. Generated CO2 rises from the second space and out a discharge vent on the lid. An hose attached to the discharge vent direct the CO2 to a pre-determined destination.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: May 1, 2012
    Assignee: M&R Consulting Services, Inc.
    Inventor: Henri J. R. Maget
  • Patent number: 8138380
    Abstract: An environmentally beneficial method of producing methanol from varied sources of carbon dioxide including flue gases of fossil fuel burning power plants, industrial exhaust gases or the atmosphere itself. Converting carbon dioxide by an electrochemical reduction of carbon dioxide in a divided electrochemical cell that includes an anode in one compartment and a metal cathode electrode in a compartment that also contains an aqueous solution comprising methanol and an electrolyte. An anion-conducting membrane can be provided between the anode and cathode to produce at the cathode therein a reaction mixture containing carbon monoxide and hydrogen, which can be subsequently used to produce methanol while also producing oxygen in the cell at the anode. The oxygen produced at the anode can be recycled for efficient combustion of fossil fuels in power plants to exclusively produce CO2 exhausts for capture and recycling as the source of CO2 for the cell.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: March 20, 2012
    Assignee: University of Southern California
    Inventors: George A. Olah, G. K. Surya Prakash
  • Patent number: 8137527
    Abstract: Methods and apparatus for collecting/concentrating carbon dioxide are disclosed. In addition, methods and apparatus for utilizing collected carbon dioxide in biofuel production and biomass cultivation are disclosed.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: March 20, 2012
    Assignee: Primafuel, Inc.
    Inventor: Richard Root Woods
  • Publication number: 20120060933
    Abstract: A respiratory metabolic simulator includes a cell that produces CO2 and depletes O2, e.g., a direct methanol fuel cell having an external electrical circuit. An electric load is applied to the external electrical circuit of the direct methanol fuel cell to vary the electrical load applied to the external electrical circuit of the direct methanol fuel cell to produce carbon dioxide. The carbon dioxide generated by the direct methanol fuel cell is supplied to respiration gases produced by the respiratory metabolic simulator. The direct methanol fuel cell is also used to remove oxygen from the respiration gases prior to mixing the respiration gases and the carbon dioxide.
    Type: Application
    Filed: September 14, 2011
    Publication date: March 15, 2012
    Applicant: INGMAR MEDICAL, LTD.
    Inventor: Stefan Frembgen
  • Publication number: 20120055804
    Abstract: Provided is a method for the electrochemical conversion of carbon dioxide to fuels. The method employs reducing CO2 in an electrochemical cell using an aerogel carbon electrode and an ionic liquid membrane, thereby providing a carbon-based combustible.
    Type: Application
    Filed: August 31, 2011
    Publication date: March 8, 2012
    Applicant: Ben-Gurion University of the Negev Research and Development Authority
    Inventors: Armand Bettelheim, Eli Korin
  • Patent number: 8124044
    Abstract: Carbon nanotubes, a method for preparing the same and an element using the same are provided. The method for preparing carbon nanotubes includes synthesizing carbon nanotubes from carbon source using an arc-discharge method in the presence of catalysts and promoter, wherein the promoter contains an element capable of reducing the surface energy of carbon nanotubes. Carbon nanotubes with high purity and narrow diameter distribution can thus be prepared.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: February 28, 2012
    Assignee: Sony Corporation
    Inventors: Hisashi Kajiura, Yongming Li, Liping Huang, Yunqi Liu, Dacheng Wei, Yu Wang, Hongliang Zhang
  • Publication number: 20120043219
    Abstract: A process is provided for synthesizing synthesis gas from carbon dioxide obtained from atmospheric air or other available carbon dioxide source and water using a sodium-conducting electrochemical cell. Synthesis gas is also produced by the coelectrolysis of carbon dioxide and steam in a solid oxide fuel cell or solid oxide electrolytic cell. The synthesis gas produced may then be further processed and eventually converted into a liquid fuel suitable for transportation or other applications.
    Type: Application
    Filed: November 1, 2011
    Publication date: February 23, 2012
    Inventors: Joseph J. Hartvigsen, Ashok V. Joshi, S. Elangovan, Shekar Balagopal, John Howard Gordon, Michele Hollist
  • Publication number: 20120031770
    Abstract: The method for reducing carbon dioxide of the present invention includes a step (a) and a step (b) as follows. A step (a) of preparing an electrochemical cell. The electrochemical cell comprises a working electrode (21), a counter electrode (23) and a vessel (28). The vessel (28) stores an electrolytic solution (27). The working electrode (21) contains boron carbide. The electrolytic solution (27) contains carbon dioxide. The working electrode (21) and the counter electrode (23) are in contact with the electrolytic solution (27). A step (b) of applying a negative voltage and a positive voltage to the working electrode and the counter electrode, respectively, to reduce the carbon dioxide.
    Type: Application
    Filed: October 19, 2011
    Publication date: February 9, 2012
    Applicant: Panasonic Corporation
    Inventors: Yuji ZENITANI, Masahiro Deguchi, Satoshi Yotsuhashi, Reiko Taniguchi
  • Publication number: 20120018311
    Abstract: The carbon dioxide reduction method of the present invention is a method including steps of: bringing an electrode (working electrode) containing a carbide of at least one element selected from Group V elements (vanadium, niobium, and tantalum) into contact with an electrolytic solution; and introducing carbon dioxide into the electrolytic solution to reduce the introduced carbon dioxide by the electrode. The material contained in the electrode, that is, the material containing a carbide of at least one element selected from Group V elements (vanadium, niobium, and tantalum) is the carbon dioxide reduction catalyst of the present invention.
    Type: Application
    Filed: July 26, 2011
    Publication date: January 26, 2012
    Applicant: PANASONIC CORPORATION
    Inventors: Satoshi YOTSUHASHI, Reiko Taniguchi, Yuji Zenitani
  • Publication number: 20110308964
    Abstract: A low-voltage, low-energy electrochemical system and method of removing protons and/or producing a base solution using a gas diffusion anode and a cathode electrolyte comprising dissolved carbon dioxide, while applying 2V or less across the anode and cathode.
    Type: Application
    Filed: July 12, 2011
    Publication date: December 22, 2011
    Inventors: RYAN J. GILLIAM, Valentin Decker, Nigel Antony Knott, Michael Kostowskyj, Bryan Boggs, Kasra Farsad
  • Publication number: 20110306754
    Abstract: The present disclosure relates to the present disclosure relates to a method of fabricating an aligned polymer containing a bonded substrate and related compositions. The method involved placing a polymer in solution which is capable of alignment wherein the polymer is also bound to a selected substrate. This may then be followed by placing the polymer solution in an electrochemical cell wherein the polymer solution is in contact with at least one electrode and applying an electric field/voltage to the polymer solution and generating a pH gradient wherein the polymer and bonded substrate positions at the isoelectric point of the polymer in solution.
    Type: Application
    Filed: June 11, 2010
    Publication date: December 15, 2011
    Applicant: SOUTHWEST RESEARCH INSTITUTE
    Inventors: Xingguo Cheng, Vasiliki Z. Poenitzsch
  • Publication number: 20110290661
    Abstract: A system and method is described to convert ambient carbon dioxide (CO2) to graphite and oxygen by splitting the carbon oxygen bonds. By using this process, CO2 from point sources or from ambient air can be reduced or effectively eliminated, and thus the system can play an important role in the fight against CO2 emissions and global warming. The system first introduces CO2 and electrolyte solution to one or a series of specially designed pipes rotating pipes to create induction inside the pipes, resulting in breaking of the carbon-oxygen bonds and production of solid carbon and gaseous oxygen. The solid carbon and gaseous oxygen are then separated.
    Type: Application
    Filed: August 8, 2008
    Publication date: December 1, 2011
    Inventor: Yoshio Niioka