Abstract: A method of separating and recovering useful rare FP contained in spent nuclear fuels (platinum group element (Ru, Rh, Pd), Ag, Tc, Se, Te) selectively and at high recovery percentage is provided. Nitric acid solution to be processed containing useful rare FP in spent nuclear fuels is electrolytically reduced by using Pd2+ or Fe2+ as a catalyst and rare FP are collectively deposited on an electrode and then deposits on the electrode are collectively dissolved by electrolytic oxidation. Then, the deposit-dissolved solution is electrolytically reduced at low current density, medium current density and high current density, successively, whereby Ag.Pd group, Se.Te group and Ru.Rh.Tc group are separately deposited and recovered, group by group. A cooperation system for nuclear power generation and fuel cell power generation can be provided by utilizing the recovered rare FP as electrode materials and production and purification catalysts for hydrogen fuel in fuel cell.
Type:
Grant
Filed:
May 30, 2002
Date of Patent:
September 21, 2004
Assignee:
Japan Nuclear Cycle Development Institute
Abstract: A conveyor system particularly configured for discrete parcels, which combines tilting tray concepts with “cross-belt” or powered conveyor concepts, which allows for the acceleration of parcels above one gravity force “G”. In one configuration, two levels can be used, the upper for larger packages, and the lower for lower packages.
Abstract: A process for the preparation by electrodeposition of metal oxide film and powder compounds for ferroelectric memory materials and ferrites wherein the metal oxide includes a plurality of metals. The process comprises providing an electrodeposition bath, providing soluble salts of the metals to this bath, electrically energizing the bath to thereby cause formation of a recoverable film of metal on the electrode, recovering the resultant film as a film or a powder, and recovering powder formed on the floor of the bath. The films and powders so produced are subsequently annealed to thereby produce metal oxide for use in electronic applications. The process can be employed to produce metal-doped metal oxide film and powder compounds for transparent conductors. The process for preparation of these metal-doped metal oxides follows that described above.
Type:
Grant
Filed:
January 2, 1996
Date of Patent:
July 28, 1998
Assignee:
Midwest Research Institute
Inventors:
Raghu Nath Bhattacharya, David S. Ginley
Abstract: A process for producing one or more metals from a mineral feedstock (12) is defined. The mineral is fed to a leaching apparatus (10) wherein it is contacted with electrolyte (14). The leaching apparatus has zones of decreasing oxidation potential (17, 18, 19, 20) respectively. A stream of electrolyte (14A) is removed from zone (20) and is treated to remove impurities and unwanted metals in treatment unit (25A), prior to metal recovery by electrolysis. The electrolyte after electrolysis is then returned to the leaching unit (10). A second electrolyte stream (14B) may be removed from zone (19) for recovery of additional metals. The electrolyte (14B) is treated to remove impurities and any unwanted metals in treatment unit (25B), prior to metal recovery by electrolysis. The electrolyte after electrolysis is returned to leaching unit (10). The process enables the leaching of difficult to leach minerals, including gold, and can produce one or more metals of high purity.