Group Viii Metal Patents (Class 205/632)
-
Patent number: 9040012Abstract: System and method for sustainable economic development which includes hydrogen extracted from substances, for example, sea water, industrial waste water, agricultural waste water, sewage, and landfill waste water. The hydrogen extraction is accomplished by thermal dissociation, electrical dissociation, optical dissociation, and magnetic dissociation. The hydrogen extraction further includes operation in conjunction with energy addition from renewable resources, for example, solar, wind, moving water, geothermal, or biomass resources.Type: GrantFiled: February 14, 2011Date of Patent: May 26, 2015Assignee: McAlister Technologies, LLCInventor: Roy Edward McAlister
-
Publication number: 20150136614Abstract: The present invention discloses an electrochemical process for water splitting for production of oxygen using porous Co3O4 nanorods with a considerably low overpotential and high exchange current density. The present invention further discloses a simple, industrially feasible process of for preparation of said nanostructured porous cobalt oxide catalyst thereof.Type: ApplicationFiled: April 25, 2013Publication date: May 21, 2015Inventors: Alias Joy Pattayil, Vijayamohanan Kunjikrishnan Pillai, Rani Mohan Ramasundar, Joyashish Debgupta
-
Publication number: 20150034493Abstract: This invention relates to electrolysis apparatus 10 adapted to produce oxygenated and hydrogenated fluid, formed during the electrolysis of an electrolytic solution passed into the apparatus 10. The apparatus 10 comprises a first and second outer end members 12 and 14 and first and second permeable electrodes 16 and 18 spaced from one another. Each permeable electrode 16 and 18 are of a foraminous or perforated material. An inlet chamber 20 has two inlets 26 for allowing electrolytic solution to pass into said chamber 20. The apparatus 10 also has an oxygen outlet 28 as well as a hydrogen outlet 30. The flow of electrolytic solution through the permeable electrodes 16 and 18 will carry with it the oxygen and hydrogen gasses generated on the positive and negative (first and second) permeable electrodes respectively.Type: ApplicationFiled: February 11, 2013Publication date: February 5, 2015Inventor: George Anagnostopoulos
-
Patent number: 8632672Abstract: The corrosion resistance of stainless steel anodes for use in alkaline water electrolysis was increased by immersion of the stainless steel anode into a caustic solution prior to electrolysis. Also disclosed herein are electrolyzers employing the so-treated stainless steel anodes. The pre-treatment process provides a stainless steel anode that has a higher corrosion resistance than an untreated stainless steel anode of the same composition.Type: GrantFiled: August 18, 2006Date of Patent: January 21, 2014Assignee: General Electric CompanyInventor: Grigorii Lev Soloveichik
-
Publication number: 20130206609Abstract: This invention relates to an electrolysis method and electrolysis apparatus (10) for producing oxygenated and hydrogenated fluid. The apparatus (10) comprises first and second outer end members (12 and 14), both being of polyethylene and at least two spaced apart permeable electrodes (16 and 18). The permeable electrode (16 and 18) are each of a foraminous or perforated material, such as nickel foam sheet material. The two permeable electrodes (16 and 18) are arranged generally parallel to one another and are relatively closely spaced from one another. An inlet chamber (20) is therefore defined between the first and second permeable electrodes (16 and 18). A first oxygenated fluid collection chamber (22) is disposed between the first permeable electrode (16) and the first end member (12) and a second hydrogenated fluid collection chamber (24) is disposed between the second permeable electrode (18) and the second end member (14).Type: ApplicationFiled: July 8, 2011Publication date: August 15, 2013Applicant: Hydrox Holdings LimitedInventor: George Anagnostopoulos
-
Patent number: 8343329Abstract: The present invention provides an electrode for hydrogen generation of which the hydrogen overvoltage is sufficiently low and which is not affected by poisoning due to iron ions, and furthermore, of which the durability is superior because during operations and stop-and-start control, the hydrogen overvoltage does not rise and exfoliation of the supported material does not occur. The present invention also provides a method for manufacturing the aforementioned hydrogen generation electrode and an electrolysis method using the electrode for hydrogen generation as a cathode. An electrode for hydrogen generation is used in which a platinum alloy including platinum and one metal selected from the group consisting of nickel, cobalt, copper, silver, and iron, or an amorphous material of a transition metal element and platinum is supported on a conductive base material.Type: GrantFiled: October 25, 2004Date of Patent: January 1, 2013Assignee: Tosoh CorporationInventors: Yoshinori Shirakura, Akinori Shimono
-
Patent number: 8236149Abstract: A multi-cell or single-cell electrolysis type electrolyzer for the production of hydrogen gas and oxygen gas with a delivery system through tubes, bubbler and check valve to internal combustion engine, generator, turbine or similar combustion device for the enhancement of hydrocarbon fuels and/or gas combustion device is disclosed. This device comprises at least one or more chambers of sealed containers, distilled water, a variety of electrolytes, multi or single strand stainless steel, nickel or platinum wire, a plastic, glass, or ceramic insulator within a stainless steel, nickel, or platinum tube and an ultrasonic piezo crystal allowing water and or a weak electrolyte solution to decompose into hydrogen gas and oxygen gas.Type: GrantFiled: December 26, 2008Date of Patent: August 7, 2012Inventor: David M. Wilson
-
Patent number: 8192609Abstract: Disclosed are electrolysis catalysts formed from cobalt, oxygen and fluorine. They can be formed as a coating on an anode by conducting an electrolysis reaction using an electrolyte containing cobalt and fluoride. The catalysts will facilitate the conversion of water to hydrogen gas and oxygen gas, even at pH neutral/room temperature reaction conditions. The resulting hydrogen gas is a means of storing renewable energy for use in hydrogen powered vehicles or the like.Type: GrantFiled: December 1, 2009Date of Patent: June 5, 2012Assignee: Wisconsin Alumni Research FoundationInventors: James B. Gerken, Shannon S. Stahl
-
Publication number: 20110259758Abstract: A cathode for hydrogen evolution in an electrolytic cell, comprising a metallic substrate, and a coating consisting of substantially pure ruthenium oxide, is disclosed. The inventive cathode provides enhanced performance and service life under unsteady and intermittent powering, such as powering from solar cells; a process for coating the metallic substrate is also disclosed.Type: ApplicationFiled: January 28, 2009Publication date: October 27, 2011Applicant: Casale Chemicals S.A.Inventors: Giancarlo Sioli, Roberto Mattone, Patrizia Armini
-
Publication number: 20100049417Abstract: Modern ECU's control fuel flow and efficiency of high performance vehicles. Converting a standard fossil fuel vehicle or boat to oxy-hydrogen requires monitoring of additional factors such as oxy-hydrogen burn rates, oxy-hydrogen flow, oxy-hydrogen temperature, oxy-hydrogen production rates and overall factors such as barometric pressure, altitude, humidity, ambient temperatures etc. When a vehicle operating as a hybrid, experiences difficulties with oxy-hydrogen production, burn rate, fuel flow, or operating temperature, the ECU must compensate and revert back to fossil fuel operating status, or suffer engine failure and potentially costly mechanical damages.Type: ApplicationFiled: August 15, 2009Publication date: February 25, 2010Applicant: Advanced Combustion TecnologyInventors: Kenneth Stephen Bailey, Gary Bethurem
-
Publication number: 20090152126Abstract: Cells and methods of producing hydrogen and oxygen from an aqueous solution at about 90% of the Faraday Limit are provided. An exemplary method includes the steps of placing a graphite electrode and a nickel electrode in an alkaline solution comprising colloidal silver, colloidal magnesium and a powdered metal such as aluminum, and applying a constant positive voltage to the nickel electrode. Further, the example includes cyclically applying a negative voltage potential to the graphite electrode by turning on the negative applied voltage for a first time period and switching off the negative voltage for a second time period. The second time period should be sufficient to permit removal of substantially all or at least some of any aluminum or zinc deposited on the graphite electrode. Graphite-containing electrodes may be pretreated to infuse with a precious metal.Type: ApplicationFiled: December 8, 2008Publication date: June 18, 2009Inventor: Linnard Gene GRIFFIN
-
Patent number: 6827838Abstract: A method of separating and recovering 18F from 18O water at high purity and efficiency while maintaining the purity of the 18O water. By using a solid electrode (1) as an anode and a container (electrodeposition vessel) (2) made of platinum as a cathode, 18F in a solution (4) is electrodeposited on the solid electrode surface by applying a voltage. Then, by using the solid electrode (1) on which 18F is electrodeposited as a cathode and a container (recovery vessel) (5) holding pure water therein as an anode, 18F is recovered in the pure water by applying a voltage of opposite polarity to that of the electrodeposition. In this process, little 18O water is lost. The initial concentration of the 18O water is maintained even after the electrodeposition of 18F, so that the 18O water can be repeatedly used as an irradiation target for production of 18F.Type: GrantFiled: August 9, 2002Date of Patent: December 7, 2004Assignee: RikenInventors: Toshio Hyodo, Yoshiko Itoh, Fuminori Saito, Yasuyuki Nagashima, Toshikazu Kurihara, Akira Goto, Masayuki Kase, Yasushige Yano, Katsumi Senoo
-
Publication number: 20030226762Abstract: A method for the photoelectrolysis of a liquid or gaseous species, comprises irradiating an ion exchange membrane of a membrane electrode assembly, wherein the membrane is an optically transparent material and comprises the species.Type: ApplicationFiled: February 19, 2003Publication date: December 11, 2003Inventors: Donald James Highgate, Jonathan Anthony Lloyd
-
Patent number: 6303015Abstract: Metallic glass/amorphous metal electrodes produced by rapid solidification (i) having a structure that is either amorphous or nanocrystalline, (ii) containing tile principal alloying element as Ni, (iii) containing alloying additions of Co and at least one member of group IVB, VB, VIB VIIB and/or VIIIB, preferably Cr and V, in the range of 0 to 20 at. %, and when combined with Ni, represent 0.75 to 0.85 of the atomic fraction of the alloy, and (iv) containing metalloid elements comprised preferably of one or more of the elements C, B, Si and P either singly or in combination to represent 0.15 to 0.25 atomic faction of the alloy. The electrodes have excellent thermal stability, improved stability in an aqueous electrolyte and can provide improved current efficiency—anodic overpotential performance. They are used in the electrolysis of aqueous electrolyte solutions such as mixtures of caustic and water in the production of oxygen and hydrogen.Type: GrantFiled: December 13, 1999Date of Patent: October 16, 2001Inventors: Steven J. Thorpe, Donald W. Kirk
-
Patent number: 5584978Abstract: This invention relates to a novel geo-electrochemical sampling electrode and process. More specifically, this invention pertains to a novel ion collection electrode, and process, which can be used in the remote sampling of ions contained in ground water. This invention consists of a geo-electrochemical sampling apparatus comprising a hollow electrically non-conductive casing; an opening in the casing for enabling ions to be transported from the exterior of the casing to the interior of the casing, a cathode positioned in the interior of the casing, and electrically connected to the exterior of the casing; and, ion exchange resin contained in the interior of the casing between the cathode and the opening.Type: GrantFiled: November 15, 1994Date of Patent: December 17, 1996Assignee: Cominco Ltd.Inventor: Richard Van Blaricom
-
Patent number: 5558756Abstract: This invention relates to a novel geo-electro-chemical sampling electrode and process. More specifically, this invention pertains to a novel ion collection electrode, and process, which can be used in the remote sampling of ions contained in ground water. This invention consists of a geo-electrochemical sampling apparatus comprising a hollow electrically non-conductive casing; an opening in the casing for enabling ions to be transported from the exterior of the casing to the interior of the casing, a cathode positioned in the interior of the casing, and electrically connected to the exterior of the casing; and, ion exchange resin contained in the interior of the casing between the cathode and the opening.Type: GrantFiled: June 5, 1995Date of Patent: September 24, 1996Assignee: Cominco Ltd.Inventor: Richard Van Blaricom