Zinc-containing Active Material Patents (Class 205/64)
  • Patent number: 11750012
    Abstract: A charging method for charging a battery, including the following steps: obtaining a lithium deposition potential of the anode; obtaining a first charging current In at different states of charge (SOC) during an nth charge and discharge cycle based on the lithium deposition potential of the anode, the n is an integer greater than or equal to 0; and during an mth charge and discharge cycle, charging the battery with a second charging current Im, m is an integer greater than n, and Im=k1×In, 0.5?k1?1. The present application also provides an electronic device and a storage medium. The above-mentioned charging method, electronic device and storage medium can quickly charge the battery.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: September 5, 2023
    Assignee: Ningde Amperex Technology Limited
    Inventors: Shan Zhu, Ting Guan, Fei Wu
  • Publication number: 20140284215
    Abstract: Disclosed is an anode for a lithium secondary battery. The anode includes a current collector in the form of a wire and a porous anode active material layer coated to surround the surface of the current collector. The three-dimensional porous structure of the active material layer increases the surface area of the anode. Accordingly, the mobility of lithium ions through the anode is improved, achieving superior battery performance. In addition, the porous structure allows the anode to relieve internal stress and pressure, such as swelling, occurring during charge and discharge of a battery, ensuring high stability of the battery while preventing deformation of the battery. These advantages make the anode suitable for use in a cable-type secondary battery. Further disclosed is a lithium secondary battery including the anode.
    Type: Application
    Filed: June 6, 2014
    Publication date: September 25, 2014
    Inventors: Yo-Han KWON, Je-Young KIM, Ki-Tae KIM, Heon-Cheol SHIN, Hyung-Man CHO, Hye-Ran JUNG
  • Publication number: 20140183047
    Abstract: The electrochemical regeneration of a replaceable metal electrode of a metal-air battery takes place in a supplementary electrochemical cell with a chemical agent oxidized on the counter electrode. The decrease of the regeneration voltage at the supplementary electrochemical cell results in the growth of the regeneration efficiency. The creation of a commercial product during chemical agent oxidation on the counter electrode decreases the overall cost of the regeneration. Possible chemical agents for regeneration include salts, metal complexes, monomers, conjugated organic molecules, oligomers or polymers.
    Type: Application
    Filed: January 1, 2013
    Publication date: July 3, 2014
    Applicant: PANISOLAR INC.
    Inventors: Iakov Kogan, Anna Khomenko
  • Publication number: 20130168254
    Abstract: A process for the electrochemical deposition of nanoscale catalyst particles using a sacrificial hydrogen anode as counter electrode for the working electrode is disclosed, whereby a concurrent development of hydrogen at the working electrode is mostly or completely avoided.
    Type: Application
    Filed: February 25, 2013
    Publication date: July 4, 2013
    Applicant: Universität des Saarlandes
    Inventor: Universität des Saarlandes
  • Publication number: 20120205248
    Abstract: An improved Ni—Zn cell with a negative electrode substrate plated with tin or tin and zinc during manufacturing has a reduced gassing rate. The copper or brass substrate is electrolytic cleaned, activated, electroplated with a matte surface to a defined thickness range, pasted with zinc oxide electrochemically active material, and baked. The defined plating thickness range of 40-80 ?In maximizes formation of an intermetallic compound Cu3Sn that helps to suppress the copper diffusion from under plating layer to the surface and eliminates formation of an intermetallic compound Cu6Sn5 during baking to provide adequate corrosion resistance during battery operation.
    Type: Application
    Filed: April 20, 2012
    Publication date: August 16, 2012
    Applicant: PowerGenix Systems, Inc.
    Inventors: Feng Feng, Jeffrey Phillips, Sam Mohanta, Jeff Barton, Zeiad M. Muntasser
  • Publication number: 20110236756
    Abstract: A negative electrode for a lithium (Li) secondary battery, a method of forming the same, and a secondary battery, the negative electrode including a tin (Sn) based current collector layer; and a multilayer film on the Sn based current collector, the multilayer film having two or more layers, wherein the multilayer film includes at least one porous layer.
    Type: Application
    Filed: September 21, 2010
    Publication date: September 29, 2011
    Inventors: Kyu-Nam Joo, Tae-Sik Kim, Beom-Kwon Kim
  • Publication number: 20100273085
    Abstract: The present invention describes a method and an apparatus for the electrochemical deposition of fine catalyst particles onto carbon fibre-containing substrates which have a compensating layer (“microlayer”). The method comprises the preparation of a precursor suspension containing ionomer, carbon black and metal ions. This suspension is applied to the substrate and then dried. The deposition of the catalyst particles onto the carbon fibre-containing substrate is effected by a pulsed electrochemical method in an aqueous electrolyte. The noble metal-containing catalyst particles produced by the method have particle sizes in the nanometer range. The catalyst-coated substrates are used for the production of electrodes, gas diffusion electrodes and membrane electrode units for electrochemical devices, such as fuel cells (membrane fuel cells, PEMFC, DMFC, etc.), electrolysers or electrochemical sensors.
    Type: Application
    Filed: February 15, 2008
    Publication date: October 28, 2010
    Applicant: SOLVICORE GMBH & CO. KG
    Inventors: Harald Natter, Vivien Keller, Rolf Hempelmann, Marco Lopez
  • Patent number: 7452486
    Abstract: Disclosed are aqueous solutions for use in high energy, highly efficient electrical energy storage devices. The solutions contain (a) a high purity sulfonic acid with a low concentration of low valent sulfur compounds or higher valent sulfur compounds susceptible to reduction, (b) a metal or metals in an oxidized state that are capable of being reduced to the zero valent oxidation state, (c) a metal that is in an oxidized state that is incapable of being reduced to its metallic state and (d) optionally, a buffering agent and/or conductivity salts.
    Type: Grant
    Filed: May 13, 2004
    Date of Patent: November 18, 2008
    Assignee: Arkema Inc.
    Inventors: Nicholas Michael Martyak, Martin Nosowitz
  • Publication number: 20040053132
    Abstract: Improved fuel compositions have improved flow properties for use in zinc/air (oxygen) fuel cell systems. In some embodiments, an improved fuel composition comprises a collection of particles having zinc and at least one non-zinc metal having improved physical properties such as narrower particle size distributions and improved morphology. In one embodiment, the fuel composition comprising the improved collection of metal particles can be generated by applying an external EMF to a fuel regeneration solution. An improved regeneration solution can comprise an electrolyte, zincate ions and at least one non-zinc metal. Due to the presence of the non-zinc metal, and other additives, in the regeneration solution, the improved regeneration solution can be used to generate an improved fuel composition comprising a collection of particles having zinc and at least one non-zinc metal.
    Type: Application
    Filed: September 12, 2003
    Publication date: March 18, 2004
    Inventors: Stuart I. Smedley, Guangwei Wu
  • Publication number: 20020187399
    Abstract: A rechargeable, thin film lithium battery cell (10) is provided having an aluminum cathode current collector (11) having a transition metal sandwiched between two crystallized cathodes (12). Each cathode has an electrolyte (13) deposited thereon which is overlaid with a lithium anode (14). An anode current collector (16) contacts the anode and substantially encases the cathode collector, cathode, electrolyte and anode. An insulator (18) occupies the spaces between the components and the anode current collector.
    Type: Application
    Filed: June 11, 2001
    Publication date: December 12, 2002
    Inventors: Lonnie G. Johnson, Ji-Guang Zhang
  • Patent number: 6221530
    Abstract: An anode for use in an electrochemical cell comprises a plate of non-particulate, mercury-free zinc metal and a coating of indium metal on at least a portion of the zinc plate surface. The anode is particularly useful in a rechargeable metal-air cell. The elimination of mercury enhances the safety of the cell and the indium coating reduces gassing at the anode and corrosion of the anode. Desirably, the electrolyte in the metal air cell also includes indium hydroxide. Also, a method for making the anode using a hot-plate joining process.
    Type: Grant
    Filed: November 23, 1998
    Date of Patent: April 24, 2001
    Assignee: AER Energy Resources, Inc.
    Inventors: Chris A. Turner, David Cady
  • Patent number: 5846675
    Abstract: An improved current collector for use with lithium ion batteries includes an aluminum grid of the type used for making conventional current collectors that is plated with a layer of zinc, the outermost portion of which is oxidized to zinc oxide. The current collector is made by first cleaning an aluminum grid in an aqueous basic solution to remove its outer layer of alumina. The cleaned aluminum grid is then plated with zinc by contact with an aqueous solution of zinc oxide. The plated aluminum grid is rinsed and dried in air to oxidize the outer surface of the zinc and form an outer layer of zinc oxide. The resulting zinc-plated current collector can be made into a battery with a higher conductivity at the interface between the current collector and the electrode active materials than a battery made with a conventional aluminum current collector. It also has a rough outer surface which improves its adhesion to the polymeric layers used in constructing a plastic lithium ion battery.
    Type: Grant
    Filed: February 21, 1997
    Date of Patent: December 8, 1998
    Assignee: Samsung Display Devices Co., Ltd.
    Inventors: Sergey V. Sazhin, Mikhail Yu Khimchenko, Yevgeniy N. Tritenichenko, Whan-jin Roh, Hong-yoel Kang
  • Patent number: 5780186
    Abstract: An improved zinc anode for use in a high density rechargeable alkaline battery is disclosed. A process for making the zinc electrode comprises electrolytic loading of the zinc active material from a slightly acidic zinc nitrate solution into a substrate of nickel, copper or silver. The substrate comprises a sintered plaque having very fine pores, a high surface area, and 80-85 percent total initial porosity. The residual porosity after zinc loading is approximately 25-30%. The electrode of the present invention exhibits reduced zinc mobility, shape change and distortion, and demonstrates reduced dendrite buildup during cycling of the battery. The disclosed battery is useful for applications requiring high energy density and multiple charge capability.
    Type: Grant
    Filed: May 9, 1996
    Date of Patent: July 14, 1998
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: John E. Casey, Jr.
  • Patent number: 5578183
    Abstract: Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries.
    Type: Grant
    Filed: May 11, 1995
    Date of Patent: November 26, 1996
    Assignee: Regents of the University of California
    Inventor: John F. Cooper
  • Patent number: 5419987
    Abstract: An electrochemically prepared, high-performance, zinc powder has an apparent density of about 0.2-2 g/cc and a surface area of about 0.5-6 m.sup.2 /gm and further has at least one corrosion inhibitor metal intrinsically alloyed therein.
    Type: Grant
    Filed: December 28, 1993
    Date of Patent: May 30, 1995
    Assignee: Electric Fuel (E.F.L.) Ltd.
    Inventors: Jonathan R. Goldstein, Inna Gektin, Yehuda Harats
  • Patent number: 5405713
    Abstract: The invention provides a refueling system for automated recharging of zinc-air batteries of the type having a plurality of active zinc anode elements formed of active zinc material attached to a support frame immersed in an aqueous alkaline electrolyte in a battery casing, each anode element being in alternate array with an air cathode, the system comprising automated means for simultaneously separating a plurality of spent anodes from the casing, means for removing used electrolyte from the casing, transport means for conveying spent anodes to an anode processing station, the anode processing station, at which zinc which has been at least partly oxidized is removed from the support frame, means for attaching new or reconstituted active zinc material to a cleaned support frame to form an active zinc anode, automated means for simultaneously introducing a plurality of active zinc anodes into the casing, and means for introducing fresh electrolyte into the casing.
    Type: Grant
    Filed: September 15, 1993
    Date of Patent: April 11, 1995
    Assignee: Electric Fuel (E.F.L.) Ltd.
    Inventors: Eugeni Pecherer, Joseph Biran, Jonathan Goldstein
  • Patent number: 5166008
    Abstract: A polymer-gel-coated conductor has a conductor member and a cross-linked polymer in a gel state. The polymer in gel state contains an electrolyte and coats the conductor member. An oxidative product or a reduction product of an organic matter or an inorganic matter has been precipitated on the surface of the conductor member or in the region of the polymer in gel state near the surface of the conductor member. Also disclosed are a method of producing the polymer-gel coated conductor and an electric cell in which at least one of a pair of electrodes is made of the polymer-gel-coated conductor.
    Type: Grant
    Filed: September 23, 1991
    Date of Patent: November 24, 1992
    Assignee: Canon Kabushiki Kaisha
    Inventors: Yoshinori Tomida, Satoshi Yuasa, Masanori Sakuranaga