Using Acidic Electrolyte Patents (Class 205/723)
  • Patent number: 11342092
    Abstract: An electrolyte for electrochemical decontamination and a preparation method and application thereof. The electrolyte is an aqueous solution including the following solutes: phosphoric acid, oxalic acid, citric acid, tartaric acid, hydrogen peroxide and glacial acetic acid. The electrolyte has a good decontamination effect and allows for fast decontamination and is obtained by reasonably combining different types of solutes and controlling the levels of the solutes and resulting secondary waste solution and residues are easy to treat. The electrolyte is suitable for overall or local electrochemical decontamination of radioactively contaminated stainless steel scrap.
    Type: Grant
    Filed: September 27, 2021
    Date of Patent: May 24, 2022
    Assignee: China Nuclear Sichuan Environmental Protection Engineering Co., Ltd.
    Inventors: Liguo Xu, Lingjun Zhao, Yanmin Cui, Yutong Di, Wenjie Gu
  • Patent number: 10332567
    Abstract: A heat dissipation and shockproof structure for an electronic module with a hard disk drive is provided. The heat dissipation and shockproof structure includes a carrying component and an elastomer. The carrying component has a fixed segment and two first extending segments. The first extending segments are connected to two ends of the fixed segment, respectively. The fixed segment is connected to a lateral surface of the hard disk drive. The distance between the first extending segments is greater than the thickness of the hard disk drive. The elastomer is disposed partially on the first extending segments at the very least.
    Type: Grant
    Filed: July 6, 2018
    Date of Patent: June 25, 2019
    Assignee: GETAC TECHNOLOGY CORPORATION
    Inventor: Wei-Chung Hsiao
  • Patent number: 9160006
    Abstract: The invention relates to a current collector foil made of aluminum or an aluminum alloy, to the use of the current collector foil for batteries or accumulators, in particular lithium-ion accumulators, and to a method for producing the current collector foil. The object of providing a current collector foil, which has very good properties with regard to conductivity and tensile strength, and which can also be produced economically, is achieved in that the current collector foil has an acid-pickled or alkali-pickled surface.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: October 13, 2015
    Assignee: Hydro Aluminium Rolled Products GmbH
    Inventors: Ulrich Hampel, Volker Denkmann, Andreas Siemen, Kathrin Eckhard, Wilhelm Schenkel, Sandra Eberhard, Dieter Bögershausen
  • Publication number: 20140332404
    Abstract: High purity tin and tin alloy are provided in which the respective contents of U and Th are 5 ppb or less, the respective contents of Pb and Bi are 1 ppm or less, and the purity is 5N or higher, provided that this excludes the gas components of O, C, N, H, S and P. A cast ingot of the tin or alloy has an ? ray count of 0.001 cph/cm2 or less. Since recent semiconductor devices are densified and of large capacity, there is risk of a soft error occurring due to ? ray from materials in the vicinity of the semiconductor chip. Thus, there are demands for purifying soldering material used in the vicinity of semiconductor devices, and materials with fewer ? rays. The disclosed tin, alloy, and method reduce ? dose of tin so as to be adaptable as the foregoing material.
    Type: Application
    Filed: July 25, 2014
    Publication date: November 13, 2014
    Inventors: Yuichiro Shindo, Kouichi Takemoto
  • Publication number: 20140047951
    Abstract: A process for recovering hard material particles which are present in a residue quantity, which is in a free-flowing or pourable form, of a hard metal which has a matrix consisting of a steel, nickel or a nickel alloy, in which the hard material particles are embedded, comprising the following production steps: pouring the residue quantity into an acid bath which contains a strong acid having a pKa value measured at room temperature of <4, adding an oxidant to the acid bath, wherein by adding the oxidant or the acid a redox potential of the acid bath is set which is within a desired range of 300-800 mV, dissolving the matrix of the residue quantity, and depositing of the hard material particles contained in the acid bath after dissolving the matrix.
    Type: Application
    Filed: February 24, 2012
    Publication date: February 20, 2014
    Applicant: DEUTSCHE EDELSTAHLWERKE GMBH
    Inventors: André Van Bennekom, Frank Niesius, Matthias Kozariszczuk
  • Patent number: 8382971
    Abstract: A method of electrochemical dissolution of ruthenium-cobalt (Ru—Co)-based alloy is disclosed, in which a Ru—Co-based alloy bulk is subjected into an electrolyte solution comprising about 50 wt. % to 75 wt. % of sulfuric acid, thereby electrolyzing the Ru—Co-based alloy bulk and forming a product solution comprising Ru and Co ions in the electrolyte solution.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: February 26, 2013
    Assignee: Solar Applied Materials Technology Corp.
    Inventors: Mei-Hui Hsu, York Wen
  • Publication number: 20130037418
    Abstract: Techniques and systems for reclaiming metals from articles having one or more components containing or coated with copper are provided. An example technique may include providing an article having one or more components containing or coated with copper, providing a barrel disposed in a container, the container containing an electrolytic solution and a copper starting pole component, positioning a plurality of electrically conductive particles and the article within the barrel, and separating one or more copper ions from at least a portion of the article by electrolysis.
    Type: Application
    Filed: June 17, 2011
    Publication date: February 14, 2013
    Applicant: EMPIRE TECHNOLOGY DEVELOPEMENT LLC
    Inventor: Wusheng Wang
  • Patent number: 8313637
    Abstract: A wear of an electrode is prevented as much as possible, thereby efficiently electrolyzing a sulfuric acid solution and the like. An electrolysis method includes: passing an electrolytic solution through an electrolysis cell including at least a pair of an anode and a cathode; and supplying the electrodes with an electric power, so as to electrolyze the electrolytic solution, wherein a viscosity of the electrolytic solution is set in a range in response to a current density upon the electric power supply to carry out the electrolysis. The viscosity of a sulfuric acid solution as the electrolytic solution is equal to or less than 10 cP when the current density is equal to or less than 50 A/dm2, the viscosity of the sulfuric acid solution is equal to or less than 8 cP when the current density is from more than 50 to 75 A/dm2, and the viscosity of the sulfuric acid solution is equal to or less than 6 cP when the current density is from more than 75 to 100 A/dm2.
    Type: Grant
    Filed: December 26, 2008
    Date of Patent: November 20, 2012
    Assignee: Kurita Water Industries Ltd.
    Inventors: Minoru Uchida, Tatsuo Nagai, Shunichi Kanamori
  • Publication number: 20120258009
    Abstract: A method of conditioning the surface of a work piece, particularly of a strip or sheet, more particularly of a lithostrip or lithosheet, including an aluminum alloy is provided. The method for conditioning the surface of a work piece and a work piece including an aluminum alloy enabling an increasing manufacturing speed in electro-chemically graining and maintaining at the same time a high quality of the grained surface, includes a conditioning method which comprises at least the two steps, degreasing the surface of the work piece with a degreasing medium and subsequently cleaning the surface of the work piece by pickling.
    Type: Application
    Filed: June 15, 2012
    Publication date: October 11, 2012
    Applicant: HYDRO ALUMINIUM DEUTSCHLAND GMBH
    Inventors: Bernhard Kernig, Henk Jan Brinkman
  • Publication number: 20120000793
    Abstract: A method of cleaning metal-containing deposits from a metal surface of a process chamber component includes immersing the metal surface in an electrochemical cleaning bath solution. A negative electrical bias is applied to the metal surface to electrochemically clean the metal-containing deposits from the metal surface. The cleaning method is capable of removing metal-containing deposits such as tantalum-containing deposits from the metal surface substantially without eroding the surface, and may be especially advantageous in the cleaning of components having textured surfaces.
    Type: Application
    Filed: June 10, 2011
    Publication date: January 5, 2012
    Inventors: Hong Wang, Kenneth Tsai
  • Publication number: 20100187127
    Abstract: Embodiments include membrane restoration process. A membrane can be restored by replacing an anolyte and a catholyte of a cell with a solution having an organic acid. The cell can include an anode, a cathode and a membrane fouled with a metal. A cheleate can be formed with the metal and the organic acid of the solution and an electric current can be provided between the anode and the cathode of the cell to protect the cell from corrosion while forming the chelate.
    Type: Application
    Filed: January 15, 2010
    Publication date: July 29, 2010
    Applicant: DOW GLOBAL TECHNOLOGIES INC.
    Inventor: Jianqing Zhou
  • Publication number: 20090078584
    Abstract: The present invention is to provide a process for producing a scorodite that can shorten the time required for synthesizing the scorodite, and further can improve the yield of arsenic and iron into the scorodite. Accordingly, a process for producing a crystalline scorodite from an acidic aqueous solution containing pentavalent As and trivalent Fe, wherein the synthesis of the crystalline scorodite is performed after the molar ratio of trivalent Fe to pentavalent As contained in the acidic aqueous solution is adjusted to be equal to or more than 0.9 and equal to or less than 1.1 is provided.
    Type: Application
    Filed: June 4, 2008
    Publication date: March 26, 2009
    Applicant: NIPPON MINING & METALS CO., LTD.
    Inventors: Yukio Kimura, Shigeo Katsura
  • Patent number: 7384529
    Abstract: A decontamination method for stripping radionuclides from the surface of stainless steel or aluminum material comprising the steps of contacting the metal with a moderately acidic carbonate/bicarbonate electrolyte solution containing sodium or potassium ions and thereafter electrolytically removing the radionuclides from the surface of the metal whereby radionuclides are caused to be stripped off of the material without corrosion or etching of the material surface.
    Type: Grant
    Filed: September 29, 2000
    Date of Patent: June 10, 2008
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Amy A. Ekechukwu
  • Patent number: 7357854
    Abstract: The invention is directed to an electropolishing solution for products or devices made from at least in part a cobalt-chromium alloy. The invention is particularly suitable for medical devices or intravascular stents made at least in part of cobalt-chromium. More particularly, the electropolishing process of the invention is particularly suited for use on implantable medical devices, such as stents, due to the biocompatibility of cobalt-chromium alloys. The invention is directed to an improved stent formed from a cobalt-chromium alloy, that possesses an ultrasmooth shiny surface. This invention is also directed to a method of electropolishing such a stent using an acidic electrolytic solution comprising a mixture of 6 parts of about 98% sulfuric acid (H2SO4), 1 part of about 37% hydrochloric acid (HCl) and 1 part by of about 85% concentrated phosphoric acid (H3PO4) to produce an exceptionally smooth surface.
    Type: Grant
    Filed: August 19, 2002
    Date of Patent: April 15, 2008
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventor: Anthony S. Andreacchi
  • Patent number: 6932898
    Abstract: An electrochemical process for simultaneously stripping diverse coatings from a metal substrate and, more particularly to the removal of MCrAlY and aluminide coatings from a base metal.
    Type: Grant
    Filed: October 9, 2002
    Date of Patent: August 23, 2005
    Assignee: United Technologies Corporation
    Inventors: Michael A. Kryzman, Mark Jaworowski
  • Patent number: 6921443
    Abstract: A process for treating a stainless steel strip in an electrolytic tank produces a stainless steel with improved surface properties. The process subjects the stainless steel to a bright annealing process, followed by an electro-chemical treatment stage at current densities of up to 200 A/dm2. The electro-chemical treatment is typically in a sulfate containing electrolyte solution. The current density can range from about 20 A/dm2 to about 200 A/dm2.
    Type: Grant
    Filed: November 17, 2000
    Date of Patent: July 26, 2005
    Assignee: Andritz AG
    Inventor: Jovan Starcevic
  • Patent number: 6893549
    Abstract: A cleaning apparatus for an ECMD anode pad including a vacuum head which applies vacuum pressure to the surface of the anode pad between ECMD operations in order to remove particles precipitated onto the surface of the anode pad and prevent or minimize inadvertent scratching or peeling of a wafer supported by the pad during the process. The particles are dislodged from the anode pad and removed from the ECMD system by flow of electrolyte solution into the vacuum head. The electrolyte solution is typically filtered before returning to the electrolyte tank for ultimate redistribution to the ECMD system.
    Type: Grant
    Filed: October 7, 2002
    Date of Patent: May 17, 2005
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd
    Inventors: Shih-Wei Chou, Minghsng Tsai
  • Patent number: 6884338
    Abstract: The present invention provides methods of polishing and/or cleaning copper interconnects using bis(perfluoroalkanesulfonyl) imide acids or copper tris(perfluoroalkanesulfonyl) methide acids compositions.
    Type: Grant
    Filed: December 16, 2002
    Date of Patent: April 26, 2005
    Assignee: 3M Innovative Properties Company
    Inventors: Susrut Kesari, William M. Lamanna, Michael J. Parent, Lawrence A. Zazzera
  • Patent number: 6858124
    Abstract: The present invention provides methods of polishing and/or cleaning copper interconnects using sulfonic acid compositions.
    Type: Grant
    Filed: December 16, 2002
    Date of Patent: February 22, 2005
    Assignee: 3M Innovative Properties Company
    Inventors: Lawrence A. Zazzera, Michael J. Parent, William M. Lamanna, Susrut Kesari
  • Patent number: 6599416
    Abstract: An electrochemical stripping method for selectively removing at least one coating from the surface of a substrate is described. The substrate is immersed in an aqueous composition through which electrical current flows. The composition includes an acid having the formula HxAF6, in which “A” is Si, Ge, Ti, Zr, Al, or Ga; and x is 1-6. Various coatings can be removed, such as diffusion or overlay coatings. The method can be used to fully-strip a coating (e.g., from a turbine component), or to partially strip one sublayer of the coating. Related processes and an apparatus are also described.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: July 29, 2003
    Assignee: General Electric Company
    Inventors: Lawrence Bernard Kool, Ralph James Carl, Jr., Bin Wei, James Anthony Ruud, Mark Alan Rosenzweig, Stephen Joseph Ferrigno
  • Publication number: 20030062271
    Abstract: An electrochemical stripping method for selectively removing at least one coating from the surface of a substrate is described. The substrate is immersed in an aqueous composition through which electrical current flows. The composition includes an acid having the formula HxAF6, in which “A” is Si, Ge, Ti, Zr, Al, or Ga; and x is 1-6. Various coatings can be removed, such as diffusion or overlay coatings. The method can be used to fully-strip a coating (e.g., from a turbine component), or to partially strip one sublayer of the coating. Related processes and an apparatus are also described.
    Type: Application
    Filed: September 28, 2001
    Publication date: April 3, 2003
    Inventors: Lawrence Bernard Kool, Ralph James Carl, Bin Wei, James Anthony Ruud, Mark Alan Rosenzweig, Stephen Joseph Ferrigno
  • Patent number: 6436276
    Abstract: A novel photoresist stripping process is disclosed. Specifically, it has been found that if a printed wiring board panel having photoresist on its surface is used as a cathode during electrolysis in an alkaline solution, the result is a rapid and complete photoresist removal with minimal sheeting of removed photoresist and no evidence of chemical attack upon metallic traces on the printed wiring board.
    Type: Grant
    Filed: October 6, 2000
    Date of Patent: August 20, 2002
    Assignee: Polyclad Laminates, Inc.
    Inventor: Eric Yakobson
  • Patent number: 6428683
    Abstract: The present invention relates to a feedback controlled stripping system with integrated water management and acid recycling system. The system comprises a stripping tank containing an electrolyte bath stripping solution for removing a coating from at least one workpiece immersed in the stripping solution while a controlled absolute electrical potential is maintained on the at least one workpiece with respect to a reference electrode also immersed in the stripping solution, a rinse tank for rinsing the workpiece(s) after removal of the workpiece(s) from the stripping tank, and a distillation unit for receiving electrolyte containing dissolved metals from the stripping tank, for purifying the electrolyte received from the stripping tank, and for returning the purified electrolyte to the stripping tank. In a preferred embodiment, the stripping tank, the rinse tank, and the distillation unit are mounted to a skid. The system further includes a control module.
    Type: Grant
    Filed: December 15, 2000
    Date of Patent: August 6, 2002
    Assignee: United Technologies Corporation
    Inventors: Mark R. Jaworowski, Christopher C. Shovlin, Glenn T. Janowsky, Curtis H. Riewe, Michael A. Kryzman
  • Patent number: 6391187
    Abstract: Method of electrolytically continuously treating a material of stainless steel at a current density of 0.1-3 A/cm2, wherein the material is passed through one or more electrolytic cells arranged in series. The cells contain an electrolyte selected from sulphuric acid, a salt thereof, phosphoric acid and nitric acid, and the material is passed through the electrolyte between electrodes arranged in series under the influence of a direct current with alternating polarity. The electrodes are arranged alternately anodic and cathodic and every electrode on one side of said material is matched by an electrode of the same polarity on an opposite side of the material, whereby an oxide surface layer with a thickness of at least 1 micrometer is removed from the material to produce a surface conditioning effect.
    Type: Grant
    Filed: July 20, 2000
    Date of Patent: May 21, 2002
    Assignee: Avesta Sheffield Aktiebolag (PUBL)
    Inventors: Anders Eklund, Malin Snis
  • Patent number: 6352636
    Abstract: An electrochemical stripping process is described that strips at least one metallic coating from a substrate. Due to the electrochemical selectivity of the disclosed process, the parent alloy is minimally affected by the electrochemical stripping process. The process comprises providing an electrolyte; disposing the coated articles and at least one electrode in the electrolyte; applying a current between the electrode and the coated articles, and removing the at least one coating from the coated articles without modifying the parent alloy. The system for the electrochemical stripping process comprises an electrolyte; a direct current source; and plurality of electrodes from which a direct current may be directed to the article being stripped. The direct current source is capable of being connected to the coated articles and the plurality of electrodes. The system permits removal of the at least one coating from the parent alloy.
    Type: Grant
    Filed: October 18, 1999
    Date of Patent: March 5, 2002
    Assignee: General Electric Company
    Inventors: Bin Wei, Don Mark Lipkin, Leo Spitz MacDonald
  • Patent number: 6332970
    Abstract: Electrolytic stripping solutions, which incorporate the novel use of oxoacids and/or oxoacid salts, and hydrogen peroxide, have been formulated for the rapid removal of electroless nickel from iron, steel, aluminum, and titanium alloys as well as other selected electrically conductive substrates. The formulations provide improved resistance to etching of the substrate and can be formulated to be free of chelates, chromates, nitrates, or concentrated acid solutions thereby increasing worker safety and reducing the cost of waste disposal of spent stripping solutions.
    Type: Grant
    Filed: October 22, 1999
    Date of Patent: December 25, 2001
    Inventor: Barry W. Coffey
  • Patent number: 6274027
    Abstract: A method of descaling titanium material including the steps of immersing titanium material having oxide scale on a surface thereof in a fused alkaline salt bath in accordance with needs; subjecting the titanium material to anodic electrolysis or alternate electrolysis in an electrolyte solution so as to dissolve the oxide scale; and subjecting the titanium material to acid pickling so as to remove remaining oxide scale or oxide film generated in the electrolysis.
    Type: Grant
    Filed: July 6, 1999
    Date of Patent: August 14, 2001
    Assignee: Sumitomo Metal Industries, LTD
    Inventors: Shigeru Kiya, Takashi Shibata, Shingo Iwasaki, Hayato Kita, Masanori Takahashi
  • Patent number: 6270913
    Abstract: A method of manufacturing a metallic fiber in which from a convergent extended wire, which is formed by a metallic fiber and a matrix member which is formed of a metallic material and whose dissolvability is higher than the dissolvability of the metallic fiber, the matrix member is continuously dissolved and removed by an electrolytic processing in a plurality of electrolytic tanks which are arranged in the conveying direction of the convergent extended wire, wherein: the convergent extended wire is passed through electrolytes in the plurality of electrolytic tanks, which are arranged in the shape of a gentle convex arch at the vertical direction upper side which includes the conveying passage of the convergent extended wire, the convergent extended wire is passed above a plurality of feeding devices which are provided at the outer sides of the electrolytes and which are disposed in the same arch-shape so as to correspond to the electrolytic tanks, in each of the plurality of electrolytic tanks, the metallic
    Type: Grant
    Filed: October 27, 1998
    Date of Patent: August 7, 2001
    Assignee: Bridgestone Metalpha Corporation
    Inventors: Tadashi Takahashi, Yukio Aoike, Tatsuo Hirayama
  • Publication number: 20010001286
    Abstract: A method of manufacturing a metallic fiber in which from a convergent extended wire, which is formed by a metallic fiber and a matrix member which is formed of a metallic material and whose dissolvability is higher than the dissolvability of the metallic fiber, the matrix member is continuously dissolved and removed by an electrolytic processing in a plurality of electrolytic tanks which are arranged in the conveying direction of the convergent extended wire, wherein: the convergent extended wire is passed through electrolytes in the plurality of electrolytic tanks, which are arranged in the shape of a gentle convex arch at the vertical direction upper side which includes the conveying passage of the convergent extended wire, the convergent extended wire is passed above a plurality of feeding devices which are provided at the outer sides of the electrolytes and which are disposed in the same arch-shape so as to correspond to the electrolytic tanks, in each of the plurality of electrolytic tanks, the metallic
    Type: Application
    Filed: January 9, 2001
    Publication date: May 17, 2001
    Applicant: BRIDGESTONE METALPHA CORPORATION
    Inventors: Tadashi Takahashi, Yukio Aoike, Tatsuo Hirayama
  • Patent number: 6176999
    Abstract: A process for electrochemically stripping a coating from an airfoil that includes immersing the airfoil in the electrochemical acid bath for a sufficient period of time to remove the coating from the airfoil while maintaining a controlled absolute electrical potential with respect to a reference electrode or a controlled electrical current density on the airfoil surface.
    Type: Grant
    Filed: December 18, 1998
    Date of Patent: January 23, 2001
    Assignee: United Technologies Corporation
    Inventors: Mark Jaworowski, Michael A. Kryzman
  • Patent number: 6165345
    Abstract: A process is provided to strip a metallic coating from a turbine blade comprising attaching the blade to a positive lead from a power supply, submersing a portion of the blade with a metallic coating to be stripped into a bath of acidic electro stripping solution, said bath containing a negative lead from a power supply attached to a conductive grid; and providing a current to the blade in the bath for a period of time effective to remove the coating on the portion of the blade.
    Type: Grant
    Filed: January 14, 1999
    Date of Patent: December 26, 2000
    Assignee: Chromalloy Gas Turbine Corporation
    Inventors: Kevin Updegrove, Frank Goodwater, William Fay
  • Patent number: 5997721
    Abstract: A method of cleaning an Al workpiece comprises a.c. anodising the workpiece in an acidic electrolyte capable of dissolving aluminium oxide and maintained at a temperature of at least 70.degree. C. under conditions such that the surface of the workpiece is cleaned with any oxide film thereon being non-porous and no more than about 20 nm thick.
    Type: Grant
    Filed: October 16, 1997
    Date of Patent: December 7, 1999
    Assignee: ALCAN International Limited
    Inventors: Peter Karl Ferdinand Limbach, Armin Kumpart, Nigel Cleaton Davies, Jonathan Ball
  • Patent number: 5958212
    Abstract: A storage apparatus of the present invention has an HDA of a storage portion, a box frame for containing the HDA and fixed to the HDA by bolts, and a protection box for incorporating at least the HDA and the box frame. A plurality of supporting members are arranged between the box frame and an inner surface of the protection box, so that the supporting members elastically support the HDA and the box frame in the protection box.
    Type: Grant
    Filed: February 3, 1998
    Date of Patent: September 28, 1999
    Assignee: Matsushita Electric Industrial
    Inventors: Toshiki Yamamura, Toshiyuki Wada, Makoto Kuwamoto
  • Patent number: 5900135
    Abstract: A method of producing components, which include a metal film on a carrier, comprises the following steps: applying a metal film to a first carrier; structuring the metal film; reducing an adherence between the first carrier and the metal film by electrically conductive contacting of the metal film; immersing the first carrier with the metal film in an aqueous electrolyte solution; immersing an electrode in the aqueous electrolyte solution; and applying a voltage between the metal film and the electrode; applying a second carrier to the metal film; and removing the second carrier with the metal film from the first carrier.
    Type: Grant
    Filed: December 5, 1996
    Date of Patent: May 4, 1999
    Assignee: Sensotherm Temperatursensorik GmbH
    Inventor: Heinrich Zitzmann
  • Patent number: 5858200
    Abstract: A method of manufacturing a metallic fiber in which from a convergent extended wire, which is formed by a metallic fiber and a matrix member which is formed of a metallic material and whose dissolvability is higher than the dissolvability of the metallic fiber, the matrix member is continuously dissolved and removed by an electrolytic processing in a plurality of electrolytic tanks which are arranged in the conveying direction of the convergent extended wire, wherein: the convergent extended wire is passed through electrolytes in the plurality of electrolytic tanks, which are arranged in the shape of a gentle convex arch at the vertical direction upper side which includes the conveying passage of the convergent extended wire, the convergent extended wire is passed above a plurality of feeding devices which are provided at the outer sides of the electrolytes and which are disposed in the same arch-shape so as to correspond to the electrolytic tanks, in each of the plurality of electrolytic tanks, the metallic
    Type: Grant
    Filed: May 23, 1997
    Date of Patent: January 12, 1999
    Assignee: Bridgestone Metalpha Corporation
    Inventors: Tadashi Takahashi, Yukio Aoike, Tatsuo Hirayama
  • Patent number: 5840173
    Abstract: A process for treating the surface of material composed of high-grade steel, particularly strip-shaped material, wherein the material is treated with a pickling solution in a least one container and is subsequently rinsed. The solution used as the pickling solution contains a hydrochloric acid as the only acid and the material to be treated is subjected in at least one container to a least one spray treatment with the pickling solution containing the hydrochloric acid.
    Type: Grant
    Filed: June 12, 1997
    Date of Patent: November 24, 1998
    Assignee: Keramchemie GmbH
    Inventor: Ralf Waldmann
  • Patent number: 5783062
    Abstract: The invention relates to a process of treatment for the recovery of the precious metals, such as platinum, rhodium and palladium, contained in various compositions including a layer of oxide(s) which is deposited on a metal support, in particular worn or spent motor vehicle postcombustion catalysts, in which the layer of oxide(s) containing the precious metals is separated from the metal support by an electrochemical route, the composition to be treated forming one of the electrodes employed or being in direct contact with one of the electrodes employed.
    Type: Grant
    Filed: August 1, 1996
    Date of Patent: July 21, 1998
    Assignee: Rhone-Poulenc Chimie
    Inventors: William Fogel, Yves Mottot
  • Patent number: 5776330
    Abstract: Apparatus and methods for decontaminating surfaces are disclosed. A housing is configured with first and second channels and first and second fluid pathways in fluid communication therewith, respectively. First and second applicators are positioned within respective first and second channels and electrodes are electrically connected with the applicators. Electric current of a first polarity is supplied to a first applicator via the first electrode, and electric current of a second polarity is supplied to a second applicator via the second electrode. Decontaminating a surface comprises supplying a first fluid to a first applicator, supplying a second fluid to a second applicator, generating an electrical potential between the first and second applicators, and contacting the contaminated surface with the first and second applicators.
    Type: Grant
    Filed: May 8, 1996
    Date of Patent: July 7, 1998
    Assignee: Corpex Technologies, Inc.
    Inventor: Thomas F. D'Muhala
  • Patent number: 5711866
    Abstract: A metallic composite solid, containing alloys and/or intermetallics, is formed by compacting at moderate pressure a mixture of powder particles, foils or sheets at a temperature close to room temperature, well below the melting temperature of the constituent components and without the addition of low melting metals such as mercury, indium or gallium acting as a sintering agent. This low temperature consolidation of the powder mixture is enhanced by having the surface oxide of the powder particles removed, prior to consolidation, and/or by coating the particles with an oxide-replacing metal such as silver or gold. The coating process may be replacement reactions, autocatalytic reduction or electrolytic reduction. The composite formation is assisted by the addition of a liquid acid such as fluoroboric acid, sulfuric acid, fluoric acid, adipic acid, ascorbic acid, or nitric acid.
    Type: Grant
    Filed: May 9, 1995
    Date of Patent: January 27, 1998
    Assignee: The United States of America as represented by the Secretary of Commerce
    Inventors: David S. Lashmore, Moshe P. Dariel, Christian E. Johnson, Menahem B. Ratzker, Anthony A. Giuseppetti, Frederick C. Eichmiller, Glenn L. Beane, David R. Kelley
  • Patent number: 5624626
    Abstract: The present invention provides a method for treating a ceramic body to provide a wettable surface on the ceramic body. According to the present invention, a ceramic body is immersed in an alkaline hydroxide solution. The ceramic body is connected to form the anode and a suitable metal is connected to form the cathode of an electrolytic cell. A difference in electrical potential is imposed across the electrolytic cell which is sufficient to remove portions of the ceramic body to provide a pitted surface on the ceramic body which is wettable.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: April 29, 1997
    Inventors: Thomas J. Walz, Issak S. Rossovsky
  • Patent number: 5609745
    Abstract: The invention relates to a process for the electrochemical oxidation of Am(III) to Am(VI), usable for separating americium from spent nuclear fuel reprocessing solutions.The process consists of adding to the aqueous nitric solution (17) containing the Am(III) a) heteropolyanion able to complex the americium, such as potassium phosphotungstate and b) the Ag(II) ion for oxidizing Am(III) being converted into Ag(I), and subjecting the solution to an electrolysis under conditions such that electrochemical regeneration takes place of the Ag(II) ion from the Ag(I) ion obtained during said oxidation.After oxidizing Am(III) to Am(VI), it is possible to extract the latter in an appropriate organic solvent.
    Type: Grant
    Filed: March 6, 1996
    Date of Patent: March 11, 1997
    Assignees: Commissariat A L'Energie Atomique, Compagnie Generale des Matieres Nucleaires
    Inventors: Jean M. Adnet, Louis Donnet, Philippe Brossard, Jacques Bourges
  • Patent number: 5507924
    Abstract: Disclosed herein are methods of measuring, adjusting and uniformalizing a sectional area ratio of a metal-covered electric wire, a method of cleaning an electric wire, a method of manufacturing a metal-covered electric wire, an apparatus for measuring a sectional area ratio of a metal-covered electric wire, and an apparatus for electropolishing a metal-covered electric wire.Electric resistance values of first and second materials are previously stored respectively so that a sectional area ratio of a metal-covered electric wire is calculated on the basis of the as-stored values and an actually measured electric resistance value of the metal-covered electric wire. Measurement and uniformalization of a sectional area ratio of a metal-covered electric wire and cleaning of an electric wire are carried out by dissolving surface layer parts of the electric wires by electropolishing.
    Type: Grant
    Filed: January 31, 1994
    Date of Patent: April 16, 1996
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Akira Mikumo, Kenichi Takahashi, Masanobu Koganeya
  • Patent number: 5487820
    Abstract: Lead dioxide residues are advantageously removed from conducting surfaces by cathodic reduction. The surface thus cleaned can directly have a new lead dioxide layer applied by cathodic oxidation.
    Type: Grant
    Filed: December 21, 1994
    Date of Patent: January 30, 1996
    Assignee: Hoechst Aktiengesellschaft
    Inventors: Rudolf Huber, Norbert Paul