Using Anode Containing Aluminum Patents (Class 205/732)
  • Patent number: 10760166
    Abstract: A sacrificial electrode attachment structure includes: a first pipe in which electrolyte flows; a second pipe which is formed of an insulating material and allows the electrolyte to flow; a cylindrical sacrificial electrode unit arranged between the first pipe and the second pipe so as to allow the electrolyte to flow, and including a sacrificial electrode that contacts the electrolyte; a first pipe joint adapted to liquid-tightly connect the first pipe to the sacrificial electrode unit in a detachable manner; and a second pipe joint adapted to liquid-tightly connect the second pipe to the sacrificial electrode unit in a detachable manner.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: September 1, 2020
    Assignee: DE NORA PERMELEC LTD
    Inventors: Hideo Otsu, Koji Yoshimura
  • Patent number: 9243150
    Abstract: This invention relates to sacrificial-metal pigments coated with an effective amount of at least one metal oxide or a combination of metal oxides such as a chromium-zirconium oxide, and the process for preparing said coated pigments and combination thereof with film-forming binders for coating metal substrates to inhibit corrosion. The coated sacrificial-metal pigments are electrically active to prevent corrosion of metal substrates that are more cathodic (electropositive) than the metal oxide coated metal pigments.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: January 26, 2016
    Assignee: The United States of America As Represented by the Secretary of the Navy
    Inventors: Craig Matzdorf, William Nickerson
  • Publication number: 20150053573
    Abstract: A method of mitigating galvanic corrosion on a vehicle is provided for use of metals with carbon containing composites. An electrically conductive material comprising a plurality of electrically conductive metallic particles and a polymer is applied to a corrosion susceptible region of an assembly having a carbon-reinforced composite and a metal. The electrically conductive material has an electrical conductivity of greater than or equal to about 1×10?4 S/m and serves as a sacrificial anode to mitigate or prevent corrosion of the metal in the assembly. Also provided are assemblies for a vehicle having reduced galvanic corrosion that include a metal component in contact with a carbon-reinforced composite, which defines a corrosion susceptible region having an electrically conductive material disposed therein.
    Type: Application
    Filed: August 22, 2013
    Publication date: February 26, 2015
    Applicant: GM Global Technology Operations LLC
    Inventors: Hamid G. Kia, William R. Rodgers
  • Patent number: 8679303
    Abstract: A liquid heating system may comprise a metallic container and a refillable non-corrosive hollow porous tube, which may be coupled to the metallic container. The refillable non-corrosive hollow porous tube may include at least one open end and anodic material may be filled or refilled into the refillable non-corrosive hollow porous tube through the at least one open end. The anodic material is corroded by the oxidation process at a substantially faster rate compared to the metallic container. The anodic material is refilled into the refillable non-corrosive hollow porous tube through the at least one open end without removing the refillable non-corrosive hollow porous tube from the metallic container or disturbing the position of the refillable non-corrosive hollow porous tube.
    Type: Grant
    Filed: November 14, 2009
    Date of Patent: March 25, 2014
    Assignee: Airgenerate, LLC
    Inventor: Sunil Kumar Sinha
  • Patent number: 8236145
    Abstract: An electrolysis prevention device, for preventing corrosion caused by electrolysis, includes a sacrificial anode made of an active metal and an anode holder supporting the sacrificial anode. The holder is adapted to fit around the inlet connection of an engine heat exchange component, such as a radiator or heater core, in such a way as to allow for a hose to be attached overtop the device. The device may be included in an originally-manufactured engine heat exchange component or may be installed later.
    Type: Grant
    Filed: December 7, 2009
    Date of Patent: August 7, 2012
    Inventor: Frank Petrosino
  • Patent number: 8163159
    Abstract: Techniques generally describe articles of enclosing manufacture and methods related to containers including a magnesium sacrificial anode for corrosion protection. Example articles of enclosing manufacture may include a liner or a rod that is configured as a sacrificial anode to protect a metallic side or end wall of the enclosing manufacture from corrosion. Other embodiments may be disclosed and claimed.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: April 24, 2012
    Assignee: Empire Technology Development LLC
    Inventor: Angele Sjong
  • Patent number: 8137528
    Abstract: This invention relates to protection of a metal component exposed to a corroding medium. One or more of the following are provided: cathodic protection, measuring of a condition of the component, retarding or avoiding of fouling. A sacrificial anode is used as the energy source such that the electric circuit can provide a pulsating current, voltage, automatically adapted current, or protecting potential. Germanium solid state elements are used.
    Type: Grant
    Filed: May 1, 2007
    Date of Patent: March 20, 2012
    Inventor: Johannes Jacobus Maria Heselmans
  • Patent number: 7914661
    Abstract: Cathodic protection of a structure including a steel member at least partly buried in a covering layer, such as steel rebar in a concrete structure, is provided by embedding sacrificial anodes into the concrete layer at spaced positions over the layer and connecting the anodes to the rebar. The anode body is formed, by pressing together finely divided powder, flakes or fibers of a sacrificial anode material such as zinc to define a porous body having pores therein. The sacrificial anode material of the anode member is directly in contact with the covering material by being buried or inserted as a tight fit into a drilled hole so that any expansion forces therefrom would be applied to the concrete with the potential of causing cracking. The pores are arranged however such that corrosion products from corrosion of the anode body are received into the pores sufficiently to prevent expansion of the anode body to an extent which would cause cracking of the covering material.
    Type: Grant
    Filed: September 12, 2007
    Date of Patent: March 29, 2011
    Inventor: David Whitmore
  • Patent number: 7909982
    Abstract: A single anode system used in multiple electrochemical treatments to control steel corrosion in concrete comprises a sacrificial metal that is capable of supporting high impressed anode current densities with an impressed current anode connection detail and a porous embedding material containing an electrolyte. Initially current is driven from the sacrificial metal [1] to the steel [10] using a power source [5] converting oxygen and water [14] into hydroxyl ions [15] on the steel and drawing chloride ions [16] into the porous material [2] around the anode such that corroding sites are moved from the steel to the anode restoring steel passivity and activating the anode. Cathodic prevention is then applied. This is preferably sacrificial cathodic prevention that is applied by disconnecting the power source and connecting the activated sacrificial anode directly to the steel.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: March 22, 2011
    Inventors: Gareth Glass, Adrian Roberts, Nigel Davison
  • Patent number: 7851022
    Abstract: The invention relates to a galvanic anode system for the corrosion protection of steel, comprised of a solid electrolyte and a galvanic anode material, preferably zinc and its alloys, glued to the solid electrolyte or embedded in the solid electrolyte. The solid electrolyte is characterised by a high ion conductivity and comprises at least one anionic and/or cationic polyelectrolyte and/or preferably at least one compound that forms complex compounds with the anode material, preferably with zinc. The solid electrolyte is produced by applying a coating agent, preferably as an aqueous dispersion or suspension, to the steel and/or to the mineral substructure, preferably to concrete. The anode material is characterised in that it forms a galvanic element in combination with the solid electrolyte and the steel to be protected, in which the steel forms the cathode.
    Type: Grant
    Filed: August 2, 2005
    Date of Patent: December 14, 2010
    Inventor: Wolfgang Schwarz
  • Publication number: 20100147703
    Abstract: A method of protecting steel in concrete is disclosed. A voltage between two connections of a power supply is generated such that current can flow between a negative connection and a positive connection. In a first protection step, one of the connections of the power supply is electrically connected to the steel to be cathodically protected and a sacrificial anode is electrically connected in series with the other connection of the power supply such that the voltage generated by the power supply is added to the voltage generated between the sacrificial anode and the steel to produce a voltage greater than the voltage generated between the sacrificial anode and the steel alone. The power supply may be a cell or battery and may be combined with the sacrificial anode to form a single unit.
    Type: Application
    Filed: December 11, 2009
    Publication date: June 17, 2010
    Inventors: Gareth Kevin GLASS, Nigel DAVISON, Adrian Charles ROBERTS
  • Patent number: 7648623
    Abstract: This assembly provides a flexible method of attaching discrete sacrificial anodes to exposed steel in concrete construction to achieve an advantageous distribution of protection current. It comprises a base metal [1] that is less noble than steel, a conductor [6] connected to the base metal, a tying point [2] formed at least in part by the conductor, and a tie [4] that passes through the tying point [2] and around the steel [5]. The tie is used to physically tie the anode between steel bars prior to placing the concrete and in the process to electrically connect the anode to the steel. The tying point is open to facilitate adjusting the tie. The separation of the tie from an anode assembly with a tying point allows the tie to be selected during installation when the properties required by the application are known.
    Type: Grant
    Filed: July 2, 2005
    Date of Patent: January 19, 2010
    Inventor: Gareth Glass
  • Patent number: 7585397
    Abstract: A novel cathodic protection system is provided that automatically controls and adjusts the voltage potential between an anode and a structure to protect the structure from corrosion. The cathodic protection system is self-powered, requiring no external power source or batteries. A cathodic protection circuit is configured to provide a cathodic protection current from the anode to the structure through an electrolyte. A power generation circuit is configured to generate power from a galvanic cell formed from the anode and an isolated electrode when cathodic protection is interrupted. A voltage potential control circuit is powered by the power generation circuit and is configured to (a) determine a structure-to-electrolyte reference voltage for the electrolyte and structure, and (b) adjust the cathodic protection current from the anode to the structure to maintain the reference voltage substantially the same as a set voltage.
    Type: Grant
    Filed: November 2, 2006
    Date of Patent: September 8, 2009
    Assignee: Farwest Corrosion Control Company
    Inventor: John C. Bollinger
  • Publication number: 20090065367
    Abstract: This invention relates to protection of a metal component exposed to a corroding medium. One or more of the following are provided: cathodic protection, measuring of a condition of the component, retarding or avoiding of fouling. A sacrificial anode is used as the energy source such that the electric circuit can provide a pulsating current, voltage, automatically adapted current, or protecting potential. Germanium solid state elements are used.
    Type: Application
    Filed: May 1, 2007
    Publication date: March 12, 2009
    Inventor: Johannes Jacobus Maria Heselmans
  • Patent number: 7402233
    Abstract: A cathodic protection system is provided for cathodically protecting an metallic substrate against corrosion, where the system comprises a sacrificial anodic material containing, but not limited to, zinc, magnesium, aluminum or a mixture of these materials, with a ceramic magnet, coupled with a plug, embedded into the sacrificial anode in such a way as to take advantage of the magnetic flux for transfer of electrons from the sacrificial anode to the object being protected, the unit is affixed to the object being protected by use of an electrically-conductive adhesive. The electrical connection may be established via the combination of the ceramic magnet and the electrically-conductive adhesive. The magnet may be magnetized in the direction of its thickness.
    Type: Grant
    Filed: November 14, 2005
    Date of Patent: July 22, 2008
    Inventor: Glen E. Morgan
  • Patent number: 7329336
    Abstract: A cathodic protection system for protecting an underwater structure includes a plurality of blocks which are capable of conforming to various structures. Each of the blocks include: a flexible wire rope, the rope constructed and arranged to pass through the center of each block in two directions, and embedded therein to fasten the blocks to each other by rows and columns; a sacrificial anode embedded in at least one of the blocks, and electrically attached inside the block to the flexible wire rope; and a connecting system electrically attached to the wire rope and to the underwater structure. Each block has a non-abrasive pad attached to it. The pad provides spacing between the block and the underwater structure. The system includes means for collecting performance data from the system. The sacrificial anode is made of a composition taken from the group comprising alloys of: zinc, aluminum, or magnesium.
    Type: Grant
    Filed: April 20, 2006
    Date of Patent: February 12, 2008
    Assignee: Deepwater Corrosion Services, Inc.
    Inventor: Jim Britton
  • Patent number: 7258780
    Abstract: An apparatus and method for protecting a structure from corrosion, according to which the apparatus includes two pivotally connected members, at least one anode device connected to at least one of the members, and a resilient component engaged with the members.
    Type: Grant
    Filed: June 29, 2004
    Date of Patent: August 21, 2007
    Assignee: Wellstream International Limited
    Inventors: Helio Marins David Filho, Robert Ribeiro Braga
  • Patent number: 7097746
    Abstract: An anode protection device and method are provided. The method includes placing a sacrificial anode in proximity to the positive and negative contacts to shield or distort the field therebetween which provides preferential corrosion of the sacrificial anode, instead of the anode. The protection device is a sacrificial anode having various forms and placed in different configurations. In one form the sacrificial anode is a plate. In another form the sacrificial anode is a ring placed around either the positive contact or negative contact to provide a shield between the negative and positive contacts. In a further device embodiment, the sacrificial anodic plate can be welded to the aluminum case of a rechargeable battery of a behind-the-ear (BTE) hearing device.
    Type: Grant
    Filed: November 20, 2002
    Date of Patent: August 29, 2006
    Assignee: Advanced Bionics Corporation
    Inventors: George Tziviskos, C. Geoffrey E Fernald
  • Patent number: 6863799
    Abstract: A method for manufacturing improved cast anodes for corrosion protection in storage tanks calls for integrating a plurality of spaced steel core rods into a sacrificial galvanic anode material sheet. The sheet is divided into segments such that a width of each segment is four to eight times the thickness of the galvanic sheet.
    Type: Grant
    Filed: May 22, 2002
    Date of Patent: March 8, 2005
    Inventor: James B. Bushman
  • Patent number: 6793800
    Abstract: Cathodic protection of an existing concrete structure, including a steel member at least partly buried, such as steel rebar, in the concrete structure, is provided by embedding anodes into a fresh concrete layer applied over an excavated patch and/or as a covering overlay. The anodes are embedded at spaced positions or as an array in the layer and connected to the rebar. A corrosion inhibitor is added into the fresh concrete at least at the interface and more preferably in admixture with the fresh concrete which acts to reduce the flow of ionic current to the steel or between the anode member and the steel in the fresh covering material without significantly increasing the resistivity of the fresh covering material and without inhibiting the ionic current between the anode member and the fresh covering material. In this way the current to the steel in the existing concrete is maximized to maximize the cathodic protection to the existing steel which is the primary target.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: September 21, 2004
    Inventor: David Whitmore
  • Patent number: 6562206
    Abstract: A propeller attachment is disclosed including a body, the body including an anodic material, at least one projection projecting from the body, and a fastener coupled to the body. An anode is also disclosed including an annular body constructed from an anodic material, a fastener disposed centrally in the annular body, and at least one extension coupled to the annular body, the at least one extension is configured to allow for gripping of the anode. A fastener for coupling a propeller to a drive shaft of a lower unit is disclosed including a fastening portion configured to threadably engage the drive shaft and retain the propeller. The fastener further includes an anodic portion disposed around the fastening portion. The anodic portion is shaped to form at least one grip, and the anodic portion preferentially corrodes to prevent corrosion of the lower unit.
    Type: Grant
    Filed: May 31, 2001
    Date of Patent: May 13, 2003
    Assignee: Johnson Outdoors Inc.
    Inventor: Shawn Showcatally
  • Patent number: 6554992
    Abstract: A corrosion resistance treatment for ductile iron pipe placed in corrosive environments provides a corrosion resistant coating from an aluminum-silicon alloy which is applied by thermal spraying or arc spraying onto the material. The alloy contains 88% aluminum and 12% silicon by weight. The aluminum provides corrosion resistance due to cathodic action and protects the pipe even when the coating is damaged. The silicon in the alloy provides greater strength to the otherwise malleable aluminum coating to resist damage to the coating during shipping, handling and installation.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: April 29, 2003
    Assignee: McWane, Inc.
    Inventor: W. Harry Smith
  • Publication number: 20020195353
    Abstract: A semiconductor system is provided that uses semiconductive organic polymers, electronics and semiconductor technology to provide a wide array of semiconductor components and a system of preventing corrosion of a surface of a metal structure in contact with a corrosive environment involving:
    Type: Application
    Filed: June 25, 2001
    Publication date: December 26, 2002
    Applicant: APPLIED SEMICONDUCTOR, INC.
    Inventor: David B. Dowling
  • Publication number: 20020023848
    Abstract: Cathodic protection of a structure including a steel member at least partly buried in a covering layer, such as steel rebar in a concrete structure, is provided by embedding sacrificial anodes into the concrete layer at spaced positions over the layer and connecting the anodes to the rebar. Each anode is inserted into a drilled hole in the layer and is electrically attached to the rebar in the same or an adjacent hole by a steel pin which is attached to the reinforcement by arc welding or by impact. In the arrangement where the anode and the attachment are in the same hole, the pin passes into or through the anode so as to hold the anode rigidly within the hole. The hole is filled by a settable filler material.
    Type: Application
    Filed: July 24, 2001
    Publication date: February 28, 2002
    Inventor: David Whitmore
  • Patent number: 6331242
    Abstract: Corrosible metallic elements of tank are protected by an anodic encasement sleeve. The anodic encasement sleeve employs an inner sacrificial anodic layer and an outer environmental barrier layer to provide both cathodic and barrier protection against corrosion. Following application of the sleeve, typically by drawing or wrapping, the anodic encasement sleeve remains substantially unbonded from the tank, though it is electrically connected by conductive means. Because of the substantially unbonded relationship between the sacrificial anodic layer and the metallic elements of the tank, if electrolyte is present under the environmental barrier (due to breaches, installation error, condensation, etc.), the electrolyte may enter the unbonded area between the tank and the anodic material. This increases the ratio of anodic material to tank available, which makes the cathodic protection more efficient and effective for an extended duration.
    Type: Grant
    Filed: June 21, 2000
    Date of Patent: December 18, 2001
    Assignee: United States Pipe and Foundry Company, Inc.
    Inventor: A. Michael Horton
  • Patent number: 6303017
    Abstract: Reinforcement in concrete is cathodically protected by galvanically connecting a sacrificial anode, such as a zinc or zinc alloy anode, to the reinforcement, and contacting the anode with an electrolyte solution having a pH which is maintained sufficiently high for corrosion of the anode to occur, and for passive film formation on the anode to be avoided. The pH of the electrolyte is preferably at least 0.2 units, and preferably from 0.5 units to more than 1.0 units, above the pH value at which passivity of the anode would occur. The electrolyte may be for example sodium hydroxide or potassium hydroxide but is preferably lithium hydroxide which also acts as an alkali-silica reaction inhibitor.
    Type: Grant
    Filed: August 20, 1999
    Date of Patent: October 16, 2001
    Assignee: Aston Material Services Limited
    Inventors: Christopher L. Page, George Sergi
  • Patent number: 6224743
    Abstract: Apparatus, compositions and methods provide cathodic protection to a structure by placing an anode layer (10) directly between the structure (22) and its underlying foundation (30). Structures contemplated to be protected in this manner include especially very large structures such as above ground storage tanks. In one aspect of preferred embodiments, the anode layer (10) comprises sheets of at least 85% aluminum with other alloying elements such as magnesium (0.05 to 6%), zinc (0.1 to 8%), indium (0.005 to 0.03%) and tin (0.05 to 0.2%) added for the purposes of optimizing current yield, polarization and ease of manufacturing the sheet.
    Type: Grant
    Filed: June 16, 2000
    Date of Patent: May 1, 2001
    Assignee: Fluor Daniel, Inc.
    Inventor: Reddi Satyanarayana
  • Patent number: 6033553
    Abstract: The present invention relates to the field of cathodic protection of reinforced concrete. A conductive metal is thermally applied onto an exposed surface of the concrete in an amount effective to form an anode on the surface. This establishes an interface between the anode and the concrete. The thermal application is performed in a manner which is effective to impart permeability to the anode. A lithium salt solution selected from the group consisting of lithium nitrate solution, lithium bromide solution, and combinations thereof is applied to the external surface of the anode. The solution migrates by capillary attraction to the interface of the anode with the concrete depositing the lithium salt at the interface. The lithium salt functions as a current enhancing agent. The salt also functions as a humectant absorbing moisture from the atmosphere thereby providing an electrolyte at the interface. These combined effects substantially increase current delivery from the anode.
    Type: Grant
    Filed: January 25, 1999
    Date of Patent: March 7, 2000
    Inventor: Jack E. Bennett
  • Patent number: 5968339
    Abstract: The present invention resides in a method for cathodic protection of and/or chloride removal from a reinforced concrete structure. The method comprises the steps of: providing an anode comprising a conductive corrodible metal; providing a corrosive environment for said anode; electrically connecting the anode and the reinforcement of the concrete structure; distributing the current flow from the anode across a surface of the concrete structure; and positioning a humectant at said surface in an effective amount to increase the current flow from the anode. The present invention can also be used to migrate lithium into concrete, thus mitigating alkali-aggregate deterioration.
    Type: Grant
    Filed: August 28, 1997
    Date of Patent: October 19, 1999
    Inventor: Kenneth C. Clear
  • Patent number: 5932087
    Abstract: An anode and bracket assembly for attaching sacrificial anodes to submerged structures utilizes one or more shepard's hook hanger brackets. The anode or anodes are cast directly on the bracket with a relatively deep spiral grooved profile for vortex shedding in high currents reducing vibration of the anode, bracket and structure. The hooks extend vertically and have a crook or notch designed to mate with a horizontal structural member which may be circular or rectangular. The hook has a long approach or tip and a lifting eye on top to assist in the quick placement of the bracket on the structure. A pointed contact bolt is mounted in the hook to be driven into the underside of the structure. This clamps the bracket to the structure and also provides good electrical contact between the structure and anode. The anode may extend horizontally spanning between two or more hooks or simply hang vertically from a single hook.
    Type: Grant
    Filed: December 30, 1997
    Date of Patent: August 3, 1999
    Assignee: Corrpro Companies, Inc.
    Inventor: Leon J. Terrase
  • Patent number: 5714045
    Abstract: A jacketed anode assembly for use in a sacrificial anode cathodic protection system deployed to impede corrosion of steel or steel reinforcement in pilings or similar supporting columns. A non-conductive jacket formed of mating shell halves is lined along its interior surface with sheets of expanded metal such as expanded zinc. The metal sheets are of a composition higher on the galvanic series than the steel reinforcement such that the sheets serve as sacrificial anodes when coupled with the steel reinforcement. The jacket and zinc lining are installed as a unit on the piling with the jacket interior surface facing the periphery of the piling and in spaced apart relationship therewith. In this space, a filling material can be introduced to both secure the metal sheets in place between the jacket and piling as well as serve as an electrolyte between the steel reinforcement and the metal sheet.
    Type: Grant
    Filed: November 8, 1996
    Date of Patent: February 3, 1998
    Assignees: Alltrista Corporation, Florida Department of Transportation
    Inventors: Ivan R. Lasa, Rodney G. Powers, Douglas L. Leng
  • Patent number: 5547560
    Abstract: A consumable anode for cathodic protection of steels and alloys susceptible to corrosion in seawater operating in an electrochemical potential range in seawater of -870 mV to -700 mV based on the potential of a saturated calomel electrode, is composed of an aluminum-based alloy having a gallium percentage of 0.03 to 0.20% and/or a cadmium percentage of 0.03 to 0.20%.
    Type: Grant
    Filed: October 28, 1994
    Date of Patent: August 20, 1996
    Assignee: Etat Francais represented by the Delegue General Pour L'Armement
    Inventor: Herve Le Guyader