Abstract: A method of rejuvenating a Ru plating seed layer during write pole fabrication in a PMR head is disclosed that involves forming an opening in a mold forming layer. A Ru seed layer is deposited by CVD within the opening and on a top surface of the mold forming layer. The substrate with the Ru seed layer is immersed in an acidic solution and an electric potential is applied for 1 to 2 minutes such that hydrogen is generated to reduce ruthenium oxides to Ru metal on the seed layer surface in an activation step. One or more surfactants are used to improve wettability of the Ru layer. The substrate is transferred directly to an electroplating solution without drying following the activation step to minimize exposure to oxygen that could regenerate oxides on the surface of the Ru layer. As a result, write pole voids and delamination are significantly reduced.
Type:
Application
Filed:
October 26, 2009
Publication date:
April 28, 2011
Inventors:
Chao-Peng Chen, Chien-Li Lin, Jas Chudasama, Situan Lam
Abstract: A method of manufacturing a gas sensor element which includes a solid electrolyte body, a target gas electrode a reference gas electrode provided on a surface of the solid electrolyte body so as to be exposed to a reference gas and the manufacturing method includes exposing the gas sensor element to a gas atmosphere containing at least one of a hydrocarbon gas, a CO2 gas, and a H2 gas and applying an ac voltage to said target gas electrode and the reference gas electrode. Each of the target gas electrode and the reference gas electrode is made up of a plurality of crystal grains defined by grain boundaries having a total length of 1000 &mgr;m or more in a surface area of 100 &mgr;m2.
Abstract: A method and a device for recovering metals from a metal-containing flow, wherein: a) the metal-containing flow (7) and a solvent (8) are supplied to a dissolving unit (1), whereby a metal-containing solution is formed; b) the metal-containing solution is then supplied to a concentration unit (2); c) the metal-containing solution is separated in the concentration unit into a small-volume flow (14) containing a high concentration of metal salts and/or metal hydroxides, and a large-volume flow (13) containing a low concentration of metal salts and/or metal hydroxides; d) the small-volume flow (14) containing a high concentration of metal salts and/or metal hydroxides is supplied to an electrochemical unit (5); and e) the small-volume flow containing a high concentration of metal salts and/or metal hydroxides is separated in said electrochemical unit into a flow (16) containing one or more metals, and a flow (15) containing a low concentration of metal salts and/or metal hydroxides.
Type:
Grant
Filed:
March 22, 2000
Date of Patent:
March 12, 2002
Assignee:
Rafel Beheer B.V.
Inventor:
Michael Wilhelmus Hendrikus Maria DeWaart
Abstract: A corrosion testing method in which testing conditions can be set easily and the corrosion advancing degree of the silver or silver alloys over a longer time period can be evaluated in a shorter time duration. In the present corrosion testing method, in evaluating the state of corrosion of the silver or silver alloys in a natural environment, an acceleration test is carried out by exposing a silver piece to an atmosphere of a gas mixture obtained on mixing only hydrogen sulfide and nitrogen dioxide in clean air.
Abstract: The invention relates to an electrocatalytic or aero-electrocatalytic process for the reducing dissolving of a refractory compound of cerium such as CeO.sub.2. According to this process, the compound to be dissolved is introduced into an aqueous acid solution, e.g. a sulphuric solution, containing an electrochemical carrier constituted by one of the reducing or oxidizing species of a redox pair, whose redox potential is below +1.25 V/SHE, e.g. a ferric salt, a uranyl salt, molecular iodine or oxygen, and continuous generation and/or regeneration takes place by electrolysis of the reducing species of said redox pair.
Abstract: A method of treating a solid material containing a substance of economic importance so as to recover or extract the substance from the material involving the following: forming a conducting mixture of the solid with a liquid so that at least some of the substance of economic importance is dissolved in the liquid, applying an electrical potential difference between at least two electrodes in contact with the mixture at spaced apart locations so as to impart opposite charges to the respective electrodes thereby attracting the liquid containing the dissolved substance to one of the electrodes, removing the liquid from an area surrounding or from a vicinity of the one electrode, and treating the liquid containing the substance of economic importance so as to recover or extract the substance. The liquid used is at least partially conducting. The present method is particularly useful for extracting or recovering gold from gold-containing or gold bearing ores.